uci_housing.py 3.9 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16
"""
UCI Housing dataset.

G
gongweibao 已提交
17
This module will download dataset from
Q
qijun 已提交
18
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and
Q
qijun 已提交
19
parse training set and test set into paddle reader creators.
Y
Yu Yang 已提交
20
"""
D
dangqingqing 已提交
21 22 23

import numpy as np
import os
R
root 已提交
24
import paddle.v2.dataset.common
25
from paddle.v2.parameters import Parameters
D
dangqingqing 已提交
26 27 28 29 30 31 32

__all__ = ['train', 'test']

URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data'
MD5 = 'd4accdce7a25600298819f8e28e8d593'
feature_names = [
    'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
Y
Your Name 已提交
33
    'PTRATIO', 'B', 'LSTAT', 'convert'
D
dangqingqing 已提交
34 35 36 37
]

UCI_TRAIN_DATA = None
UCI_TEST_DATA = None
38 39
URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fit_a_line.tar'
MD5_MODEL = '52fc3da8ef3937822fcdd87ee05c0c9b'
D
dangqingqing 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

def feature_range(maximums, minimums):
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    fig, ax = plt.subplots()
    feature_num = len(maximums)
    ax.bar(range(feature_num), maximums - minimums, color='r', align='center')
    ax.set_title('feature scale')
    plt.xticks(range(feature_num), feature_names)
    plt.xlim([-1, feature_num])
    fig.set_figheight(6)
    fig.set_figwidth(10)
    if not os.path.exists('./image'):
        os.makedirs('./image')
    fig.savefig('image/ranges.png', dpi=48)
    plt.close(fig)


def load_data(filename, feature_num=14, ratio=0.8):
    global UCI_TRAIN_DATA, UCI_TEST_DATA
    if UCI_TRAIN_DATA is not None and UCI_TEST_DATA is not None:
        return

    data = np.fromfile(filename, sep=' ')
    data = data.reshape(data.shape[0] / feature_num, feature_num)
    maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum(
        axis=0) / data.shape[0]
    feature_range(maximums[:-1], minimums[:-1])
    for i in xrange(feature_num - 1):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])
    offset = int(data.shape[0] * ratio)
    UCI_TRAIN_DATA = data[:offset]
    UCI_TEST_DATA = data[offset:]


def train():
Q
qijun 已提交
77
    """
Q
qijun 已提交
78
    UCI_HOUSING training set creator.
Q
qijun 已提交
79

Q
qijun 已提交
80 81
    It returns a reader creator, each sample in the reader is features after
    normalization and price number.
Q
qijun 已提交
82

Q
qijun 已提交
83
    :return: Training reader creator
Q
qijun 已提交
84 85
    :rtype: callable
    """
D
dangqingqing 已提交
86
    global UCI_TRAIN_DATA
R
root 已提交
87
    load_data(paddle.v2.dataset.common.download(URL, 'uci_housing', MD5))
D
dangqingqing 已提交
88 89 90 91 92 93 94 95 96

    def reader():
        for d in UCI_TRAIN_DATA:
            yield d[:-1], d[-1:]

    return reader


def test():
Q
qijun 已提交
97 98 99
    """
    UCI_HOUSING test set creator.

Q
qijun 已提交
100 101
    It returns a reader creator, each sample in the reader is features after
    normalization and price number.
Q
qijun 已提交
102 103 104 105

    :return: Test reader creator
    :rtype: callable
    """
D
dangqingqing 已提交
106
    global UCI_TEST_DATA
R
root 已提交
107
    load_data(paddle.v2.dataset.common.download(URL, 'uci_housing', MD5))
D
dangqingqing 已提交
108 109 110 111 112 113

    def reader():
        for d in UCI_TEST_DATA:
            yield d[:-1], d[-1:]

    return reader
Y
Yancey1989 已提交
114 115


116 117 118 119 120 121 122
def model():
    tar_file = paddle.v2.dataset.common.download(URL_MODEL, 'fit_a_line.tar', MD5_MODEL)
    with open(tar_file, 'r') as f:
        parameters = Parameters.from_tar(f)
    return parameters


123
def fetch():
R
root 已提交
124 125 126 127 128 129 130
    paddle.v2.dataset.common.download(URL, 'uci_housing', MD5)


def convert(path):
    """
    Converts dataset to recordio format
    """
131 132
    paddle.v2.dataset.common.convert(path, train(), 1000, "uci_housing_train")
    paddle.v2.dataset.common.convert(path, test(), 1000, "uci_houseing_test")