rnn_memory_helper_op.cc 6.0 KB
Newer Older
Y
Yang Yang(Tony) 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"

namespace paddle {
namespace operators {
class RNNMemoryHelperOp : public framework::OperatorBase {
 public:
  RNNMemoryHelperOp(const std::string &type,
                    const framework::VariableNameMap &inputs,
                    const framework::VariableNameMap &outputs,
                    const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto mem_var_name = Input("X");
    auto *mem_var = scope.FindVar(mem_var_name);
    PADDLE_ENFORCE(mem_var != nullptr,
                   "Cannot find mem_var in scope, mem_var_name is %s",
                   mem_var_name);

    auto out_name = this->Output("Out");
    auto *out_var = scope.FindVar(out_name);
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot find out_var in scope, out_var_name is %s",
                   out_name);

    auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
    auto &mem_tensor = mem_var->Get<framework::LoDTensor>();
    out_tensor->ShareDataWith(mem_tensor);
    out_tensor->set_lod(mem_tensor.lod());
  }
};

class RNNMemoryHelperOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class RNNMemoryHelperOpInfoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  RNNMemoryHelperOpInfoMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "");
    AddOutput("Out", "");
    AddAttr<int>("data_type",
                 "(int, default 5 (FP32)) "
                 "Output data type")
        .SetDefault(framework::DataType::FP32);
    AddComment("");
  }
};

class RNNMemoryHelperGradOp : public framework::OperatorBase {
 public:
  RNNMemoryHelperGradOp(const std::string &type,
                        const framework::VariableNameMap &inputs,
                        const framework::VariableNameMap &outputs,
                        const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto out_grad_var_name = Input(framework::GradVarName("Out"));
    auto *out_grad_var = scope.FindVar(out_grad_var_name);

    auto in_grad_var_name = Output(framework::GradVarName("X"));
    auto *in_grad_var = scope.FindVar(in_grad_var_name);
    PADDLE_ENFORCE(in_grad_var != nullptr,
                   "Cannot find in_grad_var in scope, name is %s",
                   in_grad_var_name);

    if (out_grad_var == nullptr) {
      VLOG(5) << "Using fill constant 0 as starting gradient";
      auto in_var_name = Input("X");
      auto *in_var = scope.FindVar(in_var_name);
      auto &in_var_tensor = in_var->Get<framework::LoDTensor>();

      framework::AttributeMap attrs;
      attrs["data_type"] = framework::ToDataType(in_var_tensor.type());
      attrs["shape"] = framework::vectorize2int(in_var_tensor.dims());
      attrs["value"] = 0.0f;

      auto zero_op = framework::OpRegistry::CreateOp(
          "fill_constant", {}, {{"Out", {in_grad_var_name}}}, attrs);
      zero_op->Run(scope, dev_ctx);
    } else {
      auto &out_grad_tensor = out_grad_var->Get<framework::LoDTensor>();
      auto *in_grad_tensor = in_grad_var->GetMutable<framework::LoDTensor>();
      in_grad_tensor->ShareDataWith(out_grad_tensor);
      in_grad_tensor->set_lod(out_grad_tensor.lod());
    }
  }
};

class RNNMemoryHelperGradOpInfoMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  RNNMemoryHelperGradOpInfoMaker(framework::OpProto *proto,
                                 framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(framework::GradVarName("Out"), "");
    AddInput("X", "");
    AddInput("Out", "");
    AddOutput(framework::GradVarName("X"), "");
    AddAttr<int>("data_type",
                 "(int, default 5 (FP32)) "
                 "Output data type")
        .SetDefault(framework::DataType::FP32);
    AddComment("");
  }
};

class RNNMemoryHelperGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    PADDLE_ENFORCE(ctx->HasOutput(x_grad_name), "");
Y
Yu Yang 已提交
137 138 139
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
Y
Yang Yang(Tony) 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(rnn_memory_helper, paddle::operators::RNNMemoryHelperOp,
                  paddle::operators::RNNMemoryHelperOpInfoMaker,
                  paddle::operators::RNNMemoryHelperOpShapeInference,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(rnn_memory_helper_grad,
                  paddle::operators::RNNMemoryHelperGradOp,
                  paddle::operators::RNNMemoryHelperGradOpInfoMaker,
                  paddle::operators::RNNMemoryHelperGradOpShapeInference);