auc_op.h 4.8 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

T
auc_op  
typhoonzero 已提交
24 25 26 27
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

T
typhoonzero 已提交
28
template <typename Place, typename T>
T
typhoonzero 已提交
29
class AucKernel : public framework::OpKernel<T> {
T
typhoonzero 已提交
30 31
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
武毅 已提交
32
    auto* inference = ctx.Input<Tensor>("Out");
T
typhoonzero 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    auto* label = ctx.Input<Tensor>("Label");
    auto* auc = ctx.Output<Tensor>("AUC");

    float* auc_data = auc->mutable_data<float>(ctx.GetPlace());

    std::string curve = ctx.Attr<std::string>("curve");
    int num_thresholds = ctx.Attr<int>("num_thresholds");
    std::vector<float> thresholds_list;
    thresholds_list.reserve(num_thresholds);
    for (int i = 1; i < num_thresholds - 1; i++) {
      thresholds_list[i] = (float)i / (num_thresholds - 1);
    }
    const float kEpsilon = 1e-7;
    thresholds_list[0] = 0.0f - kEpsilon;
    thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;

武毅 已提交
49 50
    size_t batch_size = inference->dims()[0];
    size_t inference_width = inference->dims()[1];
T
auc_op  
typhoonzero 已提交
51 52

    const T* inference_data = inference->data<T>();
武毅 已提交
53
    const int64_t* label_data = label->data<int64_t>();
T
typhoonzero 已提交
54

T
auc_op  
typhoonzero 已提交
55
    // Create local tensor for storing the curve: TP, FN, TN, FP
T
typhoonzero 已提交
56
    // TODO(typhoonzero): use eigen op to caculate these values.
T
update  
typhoonzero 已提交
57
    Tensor true_positive, false_positive, true_negative, false_negative;
T
typhoonzero 已提交
58 59 60 61 62 63

    true_positive.Resize({num_thresholds});
    false_negative.Resize({num_thresholds});
    true_negative.Resize({num_thresholds});
    false_positive.Resize({num_thresholds});

武毅 已提交
64 65 66 67
    int64_t* tp_data = true_positive.mutable_data<int64_t>(ctx.GetPlace());
    int64_t* fn_data = false_negative.mutable_data<int64_t>(ctx.GetPlace());
    int64_t* tn_data = true_negative.mutable_data<int64_t>(ctx.GetPlace());
    int64_t* fp_data = false_positive.mutable_data<int64_t>(ctx.GetPlace());
T
typhoonzero 已提交
68

T
typhoonzero 已提交
69
    for (int idx_thresh = 0; idx_thresh < num_thresholds; idx_thresh++) {
T
typhoonzero 已提交
70
      // caculate TP, FN, TN, FP for current thresh
武毅 已提交
71 72 73 74 75 76 77
      int64_t tp = 0, fn = 0, tn = 0, fp = 0;
      for (size_t i = 0; i < batch_size; i++) {
        // NOTE: label_data used as bool, labels >0 will be treated as true.
        if (label_data[i]) {
          // use first(max) data in each row
          if (inference_data[i * inference_width] >=
              (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
78 79
            tp++;
          } else {
T
typhoonzero 已提交
80
            fn++;
T
auc_op  
typhoonzero 已提交
81 82
          }
        } else {
武毅 已提交
83 84
          if (inference_data[i * inference_width] >=
              (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
85
            fp++;
T
typhoonzero 已提交
86
          } else {
T
typhoonzero 已提交
87
            tn++;
T
typhoonzero 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
          }
        }
      }
      // store rates
      tp_data[idx_thresh] = tp;
      fn_data[idx_thresh] = fn;
      tn_data[idx_thresh] = tn;
      fp_data[idx_thresh] = fp;
    }
    // epsilon to avoid divide by zero.
    float epsilon = 1e-6;
    // Riemann sum to caculate auc.
    Tensor tp_rate, fp_rate, rec_rate;
    tp_rate.Resize({num_thresholds});
    fp_rate.Resize({num_thresholds});
    rec_rate.Resize({num_thresholds});
T
update  
typhoonzero 已提交
104 105 106
    float* tp_rate_data = tp_rate.mutable_data<float>(ctx.GetPlace());
    float* fp_rate_data = fp_rate.mutable_data<float>(ctx.GetPlace());
    float* rec_rate_data = rec_rate.mutable_data<float>(ctx.GetPlace());
T
typhoonzero 已提交
107
    for (int i = 0; i < num_thresholds; i++) {
T
update  
typhoonzero 已提交
108 109 110 111 112
      tp_rate_data[i] =
          ((float)tp_data[i] + epsilon) / (tp_data[i] + fn_data[i] + epsilon);
      fp_rate_data[i] = (float)fp_data[i] / (fp_data[i] + tn_data[i] + epsilon);
      rec_rate_data[i] =
          ((float)tp_data[i] + epsilon) / (tp_data[i] + fp_data[i] + epsilon);
T
typhoonzero 已提交
113
    }
T
typhoonzero 已提交
114
    *auc_data = 0.0f;
T
typhoonzero 已提交
115
    if (curve == "ROC") {
T
typhoonzero 已提交
116 117 118
      for (int i = 0; i < num_thresholds - 1; i++) {
        auto dx = fp_rate_data[i] - fp_rate_data[i + 1];
        auto y = (tp_rate_data[i] + tp_rate_data[i + 1]) / 2.0f;
T
typhoonzero 已提交
119 120
        *auc_data = *auc_data + dx * y;
      }
T
update  
typhoonzero 已提交
121
    } else if (curve == "PR") {
T
typhoonzero 已提交
122 123 124 125 126 127 128 129 130 131 132
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
        auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle