test_determinant_op.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.tensor as tensor

paddle.enable_static()


class TestDeterminantOp(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "determinant"
        self.outputs = {'Out': self.target}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['Input'], ['Out'])

    def init_data(self):
        np.random.seed(0)
        self.case = np.random.rand(3, 3, 3, 5, 5).astype('float64')
        self.inputs = {'Input': self.case}
        self.target = np.linalg.det(self.case)


class TestDeterminantOpCase1(TestDeterminantOp):
    def init_data(self):
        np.random.seed(0)
        self.case = np.random.rand(10, 10).astype('float32')
        self.inputs = {'Input': self.case}
        self.target = np.linalg.det(self.case)


class TestDeterminantOpCase2(TestDeterminantOp):
    def init_data(self):
        np.random.seed(0)
        # not invertible matrix
        self.case = np.ones([4, 2, 4, 4]).astype('float64')
        self.inputs = {'Input': self.case}
        self.target = np.linalg.det(self.case)


class TestDeterminantAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(0)
        self.shape = [3, 3, 5, 5]
        self.x = np.random.random(self.shape).astype(np.float32)
        self.place = paddle.CPUPlace()

    def test_api_static(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', self.shape)
            out = paddle.linalg.det(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x}, fetch_list=[out])
        out_ref = np.linalg.det(self.x)

        for out in res:
            self.assertEqual(np.allclose(out, out_ref, rtol=1e-03), True)

    def test_api_dygraph(self):
        paddle.disable_static(self.place)
        x_tensor = paddle.to_tensor(self.x)
        out = paddle.linalg.det(x_tensor)
        out_ref = np.linalg.det(self.x)
        self.assertEqual(np.allclose(out.numpy(), out_ref, rtol=1e-03), True)
        paddle.enable_static()


class TestSlogDeterminantOp(OpTest):
    def setUp(self):
        self.op_type = "slogdeterminant"
        self.init_data()
        self.outputs = {'Out': self.target}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        # the slog det's grad value is always huge
        self.check_grad(['Input'], ['Out'], max_relative_error=0.1)

    def init_data(self):
        np.random.seed(0)
        self.case = np.random.rand(4, 5, 5).astype('float64')
        self.inputs = {'Input': self.case}
        self.target = np.array(np.linalg.slogdet(self.case))


class TestSlogDeterminantOpCase1(TestSlogDeterminantOp):
    def init_data(self):
        np.random.seed(0)
        self.case = np.random.rand(2, 2, 5, 5).astype(np.float32)
        self.inputs = {'Input': self.case}
        self.target = np.array(np.linalg.slogdet(self.case))


class TestSlogDeterminantAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(0)
        self.shape = [3, 3, 5, 5]
        self.x = np.random.random(self.shape).astype(np.float32)
        self.place = paddle.CPUPlace()

    def test_api_static(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', self.shape)
            out = paddle.linalg.slogdet(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x}, fetch_list=[out])
        out_ref = np.array(np.linalg.slogdet(self.x))
        for out in res:
            self.assertEqual(np.allclose(out, out_ref, rtol=1e-03), True)

    def test_api_dygraph(self):
        paddle.disable_static(self.place)
        x_tensor = paddle.to_tensor(self.x)
        out = paddle.linalg.slogdet(x_tensor)
        out_ref = np.array(np.linalg.slogdet(self.x))
        self.assertEqual(np.allclose(out.numpy(), out_ref, rtol=1e-03), True)
        paddle.enable_static()


if __name__ == '__main__':
    unittest.main()