mean_op.cu 2.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liaogang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
L
liaogang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#ifdef __NVCC__
W
wangchaochaohu 已提交
15
#include "cub/cub.cuh"
16 17 18 19 20
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/mean_op.h"
W
wangchaochaohu 已提交
22
#include "paddle/fluid/platform/cuda_primitives.h"
C
chengduo 已提交
23
#include "paddle/fluid/platform/float16.h"
L
liaogang 已提交
24

W
wangchaochaohu 已提交
25 26 27 28
namespace paddle {
namespace operators {

template <typename T>
29
__global__ void MeanRunKernel(const T* in_data, T* out_data, int N) {
W
wangchaochaohu 已提交
30
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
31
  T data = in_data[0];
W
wangchaochaohu 已提交
32
  for (; idx < N; idx += blockDim.x * gridDim.x) {
33
    out_data[idx] = data / (static_cast<T>(N));
W
wangchaochaohu 已提交
34 35 36 37 38 39 40 41
  }
}

template <typename DeviceContext, typename T>
class MeanCUDAGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto OG = context.Input<Tensor>(framework::GradVarName("Out"));
42 43 44 45 46
    PADDLE_ENFORCE_EQ(OG->numel(), 1,
                      platform::errors::InvalidArgument(
                          "Mean Gradient Input Tensor len should be 1. But "
                          "received Out@Grad's elements num is %d.",
                          OG->numel()));
W
wangchaochaohu 已提交
47 48 49
    auto IG = context.Output<Tensor>(framework::GradVarName("X"));
    IG->mutable_data<T>(context.GetPlace());

50
    auto in_data = OG->data<T>();
W
wangchaochaohu 已提交
51 52 53 54 55 56 57 58 59 60 61 62
    auto size_prob = IG->numel();
    auto out_data = IG->data<T>();
    int threads = 512;
    int grid = (size_prob + threads - 1) / threads;
    auto stream = context.cuda_device_context().stream();
    MeanRunKernel<T><<<grid, threads, 0, stream>>>(in_data, out_data,
                                                   size_prob);
  }
};
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
63
namespace ops = paddle::operators;
C
chengduo 已提交
64
namespace plat = paddle::platform;
65

Q
QI JUN 已提交
66
REGISTER_OP_CUDA_KERNEL(
67 68 69
    mean, ops::MeanKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MeanKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MeanKernel<paddle::platform::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
70
REGISTER_OP_CUDA_KERNEL(
71 72 73 74 75
    mean_grad,
    ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext,
                            plat::float16>);