sparse_api_gen.py 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import yaml
import argparse

18
from api_gen import ForwardAPI
Z
zhangkaihuo 已提交
19
from api_base import PREFIX_TENSOR_NAME
20 21


22
class SparseAPI(ForwardAPI):
23

24 25 26 27
    def __init__(self, api_item_yaml):
        super(SparseAPI, self).__init__(api_item_yaml)

    def gene_api_declaration(self):
28 29 30 31
        return f"""
// {", ".join(self.outputs['names'])}
{super(SparseAPI, self).gene_api_declaration()}
"""
32 33

    def gene_output(self,
34 35 36
                    out_dtype_list,
                    out_tensor_type_list=None,
                    code_indent='',
37
                    inplace_flag=False):
38
        kernel_output = []
39 40
        output_names = []
        output_create = ""
41
        return_type = self.get_return_type_with_intermediate(inplace_flag)
42 43 44 45 46
        output_type_map = {
            'dense': 'TensorType::DENSE_TENSOR',
            'sparse_coo': 'TensorType::SPARSE_COO',
            'sparse_csr': 'TensorType::SPARSE_CSR'
        }
47

48
        if len(out_dtype_list) == 1:
49
            kernel_output.append('kernel_out')
50 51 52 53 54
            output_names.append('kernel_out')
            inplace_assign = " = " + self.inplace_map[self.outputs['names'][
                0]] if inplace_flag and self.inplace_map is not None and self.outputs[
                    'names'][0] in self.inplace_map else ""
            output_create = f"""
55
    {return_type} api_output{inplace_assign};
56
    auto* kernel_out = SetSparseKernelOutput(&api_output, {output_type_map[out_dtype_list[0]]});"""
57

58
        elif len(out_dtype_list) > 1:
59
            output_create = f"""
60
    {return_type} api_output;"""
61 62 63

            if inplace_flag:
                output_create = f"""
64
    {return_type} api_output{{"""
65 66 67 68 69 70 71 72

                for out_name in self.outputs['names']:
                    if out_name in self.inplace_map:
                        output_create = output_create + self.inplace_map[
                            out_name] + ', '
                    else:
                        output_create += 'Tensor(), '
                output_create = output_create[:-2] + '};'
73

74
            for i in range(len(out_dtype_list)):
75
                kernel_output.append(f'kernel_out_{i}')
76 77
                output_names.append(f'kernel_out_{i}')
                output_create = output_create + f"""
78
    auto* kernel_out_{i} = SetSparseKernelOutput(&std::get<{i}>(api_output), {output_type_map[out_dtype_list[i]]});"""
79 80 81 82 83 84 85 86 87 88

        else:
            raise ValueError(
                "{} : Output error: the output should not be empty.".format(
                    self.api))

        return kernel_output, output_names, output_create

    def gen_sparse_kernel_context(self, kernel_output_names):
        input_trans_map = {
89 90 91 92
            'const Tensor&':
            'const phi::TenseBase&',
            'const std::vector<Tensor>&':
            'const std::vector<phi::TenseBase>&',
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            'const paddle::optional<Tensor>&':
            'paddle::optional<const phi::TenseBase&>'
        }
        out_trans_map = {
            'Tensor': 'phi::TenseBase*',
            'std::vector<Tensor>': 'std::vector<phi::TenseBase*>'
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        kernel_context_code = ""
        for param in kernel_param:
            if param in input_names:
                if param in self.optional_vars:
112 113
                    kernel_context_code = kernel_context_code + f"""
    kernel_context.EmplaceBackInput({param} ? {param}->impl().get() : nullptr);"""
114 115
                else:
                    kernel_context_code = kernel_context_code + f"""
116
    kernel_context.EmplaceBackInput({param}.impl().get());"""
117 118 119 120

                continue
            if param in attr_names:
                # set attr for kernel_context
121 122
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    param = 'phi::IntArray(' + param + ')'
123 124 125 126 127 128 129
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
                    param = 'phi::Scalar(' + param + ')'
            elif isinstance(param, bool):
                param = str(param).lower()
            else:
                param + str(param) + ", "
            kernel_context_code = kernel_context_code + f"""
130
    kernel_context.EmplaceBackAttr({param});"""
131 132 133

        for out_name in kernel_output_names:
            kernel_context_code = kernel_context_code + f"""
134
    kernel_context.EmplaceBackOutput({out_name});"""
135 136 137

        return kernel_context_code

Z
zhangkaihuo 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    def prepare_input(self):
        input_names = self.inputs['names']
        input_types = self.inputs['tensor_type']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names

        create_input_var_code = ""
        tensor_type_map = {
            'dense': 'phi::DenseTensor',
            'sparse_coo': 'phi::SparseCooTensor',
            'sparse_csr': 'phi::SparseCsrTensor'
        }
        for param in infer_meta_params:
            if param in input_names:
                var_name = "auto " + PREFIX_TENSOR_NAME + param + " = "
                if self.inputs['input_info'][param] == "const Tensor&":
                    create_input_var_code = create_input_var_code + var_name + param + ".impl();\n"
                elif param in self.optional_vars:
                    tensor_type = 'phi::DenseTensor'
                    for name, input_type in zip(input_names, input_types):
                        if param == name:
                            tensor_type = tensor_type_map[input_type]
                            break
                    optional_var = "paddle::optional<" + tensor_type + ">("
                    create_input_var_code = create_input_var_code + var_name + param + " ? " + optional_var + "*static_cast<" + tensor_type + "*>((*" + param + ").impl().get())) : " + optional_var + "paddle::none);\n"
        return f"""{create_input_var_code}"""

168
    def gen_sparse_kernel_code(self, kernel_name, inplace_flag=False):
169
        _, kernel_output_names, output_create = self.gene_output(
170
            self.kernel['dispatch'][kernel_name][1], None, '', inplace_flag)
171 172 173

        kernel_context_code = self.gen_sparse_kernel_context(
            kernel_output_names)
174 175
        return_code = "" if len(
            self.gene_return_code()) == 0 else "  " + self.gene_return_code()
176
        return f"""
177
    VLOG(6) << "{self.api} api sparse kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
178
    auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
179
        "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}});
180
    const auto& phi_kernel = kernel_result.kernel;
181
    VLOG(6) << "{self.api} api sparse kernel: " << phi_kernel;
182

183
    auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
184
    auto kernel_context = phi::KernelContext(dev_ctx);
185
{output_create}
Z
zhangkaihuo 已提交
186 187
{self.prepare_input()}
{self.gene_infer_meta(kernel_output_names, '')}
188
{kernel_context_code}
189 190 191 192 193
    phi_kernel(&kernel_context);
  {return_code}"""

    def get_condition_code(self, kernel_name):
        assert self.kernel['dispatch'][kernel_name], \
C
Chen Weihang 已提交
194
                f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'conv3d' in sparse_ops.yaml."
195 196 197 198 199 200
        input_types = self.kernel['dispatch'][kernel_name][0]
        sparse_type_map = {
            'sparse_coo': 'DataLayout::SPARSE_COO',
            'sparse_csr': 'DataLayout::SPARSE_CSR'
        }
        condition_list = []
Z
zhangkaihuo 已提交
201
        tensor_type_list = []
202 203
        for i, in_type in enumerate(input_types):
            if in_type == "dense":
204 205 206 207 208 209 210 211
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || phi::DenseTensor::classof({self.inputs['names'][i]}->impl().get()))"
                    )
                else:
                    condition_list.append(
                        f"phi::DenseTensor::classof({self.inputs['names'][i]}.impl().get())"
                    )
212
            else:
Z
zhangkaihuo 已提交
213 214 215 216 217 218 219 220 221
                if in_type == 'sparse_coo':
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_sparse_coo_tensor()")
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_sparse_csr_tensor()")
            tensor_type_list.append(in_type)
        self.inputs['tensor_type'] = tensor_type_list

222 223 224 225 226 227 228 229
        return " && ".join(condition_list)

    def gene_dispatch_code(self, kernel_name, inplace_flag=False):
        return f"""
  if ({self.get_condition_code(kernel_name)}) {{
{self.gen_sparse_kernel_code(kernel_name, inplace_flag)}
  }}
"""
230 231

    def gene_base_api_code(self, inplace_flag=False):
232 233 234
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
235 236
        kernel_dispatch_code = f"{self.gene_kernel_select()}\n"
        for kernel_name in self.kernel['func']:
237 238
            kernel_dispatch_code += self.gene_dispatch_code(
                kernel_name, inplace_flag)
239

240
        return f"""
241
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_define_args()}) {{
242 243 244
{kernel_dispatch_code}
  PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors."));
245 246 247 248 249 250 251 252 253 254
}}
"""


def header_include():
    return """
#include <tuple>

#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/common/scalar.h"
255
#include "paddle/phi/common/int_array.h"
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
#include "paddle/utils/optional.h"
"""


def source_include(header_file_path):
    return f"""
#include "{header_file_path}"
#include <memory>

#include "glog/logging.h"

#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/core/kernel_registry.h"
Z
zhangkaihuo 已提交
271 272 273 274 275 276 277 278 279
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/utils/none.h"

#include "paddle/phi/infermeta/sparse/unary.h"
#include "paddle/phi/infermeta/sparse/binary.h"
#include "paddle/phi/infermeta/sparse/multiary.h"
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
"""


def api_namespace():
    return ("""
namespace paddle {
namespace experimental {
namespace sparse {

""", """

}  // namespace sparse
}  // namespace experimental
}  // namespace paddle
""")


def generate_api(api_yaml_path, header_file_path, source_file_path):

    with open(api_yaml_path, 'r') as f:
        apis = yaml.load(f, Loader=yaml.FullLoader)
    header_file = open(header_file_path, 'w')
    source_file = open(source_file_path, 'w')

    namespace = api_namespace()

    header_file.write("#pragma once\n")
    header_file.write(header_include())
    header_file.write(namespace[0])

    include_header_file = "paddle/phi/api/include/sparse_api.h"
    source_file.write(source_include(include_header_file))
    source_file.write(namespace[0])

    for api in apis:
        sparse_api = SparseAPI(api)
316 317
        if sparse_api.is_dygraph_api:
            sparse_api.is_dygraph_api = False
318 319 320 321 322 323 324 325 326 327 328 329 330
        header_file.write(sparse_api.gene_api_declaration())
        source_file.write(sparse_api.gene_api_code())

    header_file.write(namespace[1])
    source_file.write(namespace[1])

    header_file.close()
    source_file.close()


def main():
    parser = argparse.ArgumentParser(
        description='Generate PaddlePaddle C++ Sparse API files')
331 332
    parser.add_argument('--api_yaml_path',
                        help='path to sparse api yaml file',
C
Chen Weihang 已提交
333
                        default='paddle/phi/api/yaml/sparse_ops.yaml')
334 335 336 337 338 339 340 341

    parser.add_argument('--api_header_path',
                        help='output of generated api header code file',
                        default='paddle/phi/api/include/sparse_api.h')

    parser.add_argument('--api_source_path',
                        help='output of generated api source code file',
                        default='paddle/phi/api/lib/sparse_api.cc')
342 343 344 345 346 347 348 349 350 351 352 353

    options = parser.parse_args()

    api_yaml_path = options.api_yaml_path
    header_file_path = options.api_header_path
    source_file_path = options.api_source_path

    generate_api(api_yaml_path, header_file_path, source_file_path)


if __name__ == '__main__':
    main()