test_recurrent_op.py 14.5 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
Yan Chunwei 已提交
14
import unittest
S
superjom 已提交
15

Q
Qiao Longfei 已提交
16
import paddle.v2.fluid.layers as layers
Q
qiaolongfei 已提交
17
from paddle.v2.fluid.framework import Program, grad_var_name
Q
Qiao Longfei 已提交
18
from paddle.v2.fluid.executor import Executor
F
fengjiayi 已提交
19
from paddle.v2.fluid.backward import append_backward
Y
Yu Yang 已提交
20
import numpy as np
Q
Qiao Longfei 已提交
21
import paddle.v2.fluid.core as core
S
fix res  
superjom 已提交
22 23


Y
Yu Yang 已提交
24 25 26 27
class PyRNNBase(object):
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
28

29 30
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
31 32 33

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
34 35
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
36 37 38 39

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

class PySimpleRNN1(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN1, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.h_boot = np.random.normal(size=(batch_size,
                                             input_dim)).astype("float32")

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN2, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.W = np.random.normal(size=(input_dim, input_dim)).astype("float32")
        self.U = np.random.normal(size=(input_dim, input_dim)).astype("float32")
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
73 74 75

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
76
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
77 78
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
79 80
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
81

Y
Yu Yang 已提交
82 83
        def py_sigmoid(x):
            return 1. / (1. + np.exp(-x))
S
fix res  
superjom 已提交
84

Y
Yu Yang 已提交
85 86
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
87 88


Y
Yu Yang 已提交
89 90 91
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
92 93 94
    return tensor


Y
Yu Yang 已提交
95
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
96 97 98
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
99
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
100 101 102 103 104
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
105
        - h
Y
Yan Chunwei 已提交
106 107
    '''

Y
Yu Yang 已提交
108 109 110 111
    input_dim = 2
    batch_size = 1
    sent_len = 1

112 113 114
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
115
        self.p_info = {
116 117
            "main_program": self.main_program,
            "startup_program": self.startup_program
Y
Yu Yang 已提交
118 119
        }
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
120

S
superjom 已提交
121
    def setUp(self):
122
        self.setup_program()
Y
Yu Yang 已提交
123
        self.data_field = {"x", "h_boot"}
Y
Yan Chunwei 已提交
124

Y
Yu Yang 已提交
125 126 127 128
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

129
        self.output = layers.mean(x=self.create_rnn_op(), **self.p_info)
Y
Yan Chunwei 已提交
130 131

    def create_rnn_op(self):
132
        x = layers.data(
Y
Yu Yang 已提交
133
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
134
            dtype='float32',
Y
Yu Yang 已提交
135 136 137
            name='x',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
138
        x.stop_gradient = False
139
        h_boot = layers.data(
Y
Yu Yang 已提交
140
            shape=[self.input_dim],
F
fengjiayi 已提交
141
            dtype='float32',
Y
Yu Yang 已提交
142 143
            name='h_boot',
            **self.p_info)
Y
Yu Yang 已提交
144
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
145

146
        rnn = layers.StaticRNN(main_program=self.main_program)
Y
Yu Yang 已提交
147 148 149 150
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

151 152
            h = layers.scale(
                x=layers.elementwise_add(
Y
Yu Yang 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
                    x=h_pre, y=x_t, **self.p_info),
                scale=self.py_rnn.scale,
                **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        exe = Executor(self.place)
168
        out = exe.run(self.main_program,
Y
Yu Yang 已提交
169 170 171
                      feed=self.feed_map,
                      fetch_list=[self.output])

D
dzhwinter 已提交
172
        return out[0]
Y
Yu Yang 已提交
173 174 175 176 177 178 179

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        fetch_list = [
Q
qiaolongfei 已提交
180
            self.main_program.global_block().var(grad_var_name(x))
Y
Yu Yang 已提交
181 182 183 184
            for x in self.data_field
        ]

        exe = Executor(self.place)
185 186
        return exe.run(self.main_program,
                       feed=self.feed_map,
D
dzhwinter 已提交
187 188
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yu Yang 已提交
189 190 191 192

    def test_backward(self):
        self.check_forward()

F
fengjiayi 已提交
193
        append_backward(self.output)
Y
Yu Yang 已提交
194 195 196 197 198 199 200 201 202 203 204

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
        for idx, name in enumerate(self.data_field):
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
            self.assertTrue(
                np.isclose(
                    num_grad[idx], ana_grad[idx], rtol=0.1).all())

    def check_forward(self):
S
superjom 已提交
205
        print 'test recurrent op forward'
S
superjom 已提交
206 207 208 209 210 211
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        print 'pd_output', pd_output
        print
        print 'py_output', py_output
        self.assertEqual(pd_output.shape, py_output.shape)
S
superjom 已提交
212
        self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all())
Y
Yan Chunwei 已提交
213

Y
Yu Yang 已提交
214 215 216 217 218 219 220 221 222
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
        feed_list = [getattr(self.py_rnn, x) for x in self.data_field]
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
223

Y
Yu Yang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
    '''
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
255
        self.setup_program()
Y
Yu Yang 已提交
256 257 258 259 260 261 262

        self.data_field = {"x", "h_boot", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

263
        self.output = layers.mean(x=self.create_rnn_op(), **self.p_info)
Y
Yu Yang 已提交
264 265

    def create_rnn_op(self):
266
        x = layers.data(
Y
Yu Yang 已提交
267
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
268
            dtype='float32',
Y
Yu Yang 已提交
269 270 271
            name='x',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
272
        x.stop_gradient = False
273
        h_boot = layers.data(
Y
Yu Yang 已提交
274
            shape=[self.input_dim],
F
fengjiayi 已提交
275
            dtype='float32',
Y
Yu Yang 已提交
276 277
            name='h_boot',
            **self.p_info)
Y
Yu Yang 已提交
278
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
279

280
        rnn = layers.StaticRNN(main_program=self.main_program)
Y
Yu Yang 已提交
281 282 283 284
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

285 286
            temp_l = layers.fc(input=x_t,
                               size=self.input_dim,
Y
Yu Yang 已提交
287
                               param_attr='W',
288 289 290 291
                               bias_attr=False,
                               **self.p_info)
            temp_r = layers.fc(input=h_pre,
                               size=self.input_dim,
Y
Yu Yang 已提交
292
                               param_attr='U',
293 294 295 296 297
                               bias_attr=False,
                               **self.p_info)

            h = layers.sigmoid(
                x=layers.elementwise_add(
Y
Yu Yang 已提交
298 299 300 301 302 303 304 305 306
                    x=temp_l, y=temp_r, **self.p_info),
                **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()


307
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
        def __init__(self, input_shape, output_shape):
324 325
            super(RecurrentOpMultipleMemoryTest.PySimpleRNN3, self).__init__(
                input_shape, output_shape)
Y
Yu Yang 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

            seq_len, batch_size, input_dim = input_shape
            self.h_boot1 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")
            self.h_boot2 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
353
        self.setup_program()
Y
Yu Yang 已提交
354 355 356 357 358

        self.data_field = {"x", "h_boot1", "h_boot2"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
359 360
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
            self.input_shape, self.output_shape)
Y
Yu Yang 已提交
361

362
        self.output = layers.mean(x=self.create_rnn_op(), **self.p_info)
Y
Yu Yang 已提交
363 364

    def create_rnn_op(self):
365
        x = layers.data(
Y
Yu Yang 已提交
366
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
367
            dtype='float32',
Y
Yu Yang 已提交
368 369 370
            name='x',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
371
        x.stop_gradient = False
372
        h_boot1 = layers.data(
Y
Yu Yang 已提交
373
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
374
            dtype='float32',
Y
Yu Yang 已提交
375 376 377
            name='h_boot1',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
378
        h_boot1.stop_gradient = False
379
        h_boot2 = layers.data(
Y
Yu Yang 已提交
380
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
381
            dtype='float32',
Y
Yu Yang 已提交
382 383 384
            name='h_boot2',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
385
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
386

387
        rnn = layers.StaticRNN(main_program=self.main_program)
Y
Yu Yang 已提交
388 389 390 391 392
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

393 394 395
            mem1 = layers.scale(x=h_pre1, scale=1.0, **self.p_info)
            mem2 = layers.scale(x=h_pre2, scale=1.0, **self.p_info)
            out = layers.sums(input=[mem1, x_t, mem2], **self.p_info)
Y
Yu Yang 已提交
396 397 398 399 400 401

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
402 403


404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
        def __init__(self, input_shape, output_shape):
            super(RecurrentOpNoMemBootTest.PySimpleRNN4, self).__init__(
                input_shape, output_shape)
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

        self.data_field = {"x"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape,
                                                            self.output_shape)
        self.output = layers.mean(x=self.create_rnn_op(), **self.p_info)
        print self.main_program

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
452
            dtype='float32',
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
            name='x',
            append_batch_size=False,
            **self.p_info)
        x.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
            mem = layers.elementwise_add(x=mem_pre, y=x_t, **self.p_info)
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


Y
Yan Chunwei 已提交
469
if __name__ == '__main__':
Q
QI JUN 已提交
470 471
    # FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/6152
    exit(0)
Y
Yan Chunwei 已提交
472
    unittest.main()