alexnet_multi_gpu.py 13.7 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
D
dangqingqing 已提交
14 15 16 17 18 19 20 21 22 23 24
from six.moves import xrange  # pylint: disable=redefined-builtin
from datetime import datetime
import math
import re
import time

import tensorflow.python.platform
import tensorflow as tf

FLAGS = tf.app.flags.FLAGS

25 26
tf.app.flags.DEFINE_integer('batch_size', 64, """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
D
dangqingqing 已提交
27 28 29 30 31 32 33 34
tf.app.flags.DEFINE_string('data_format', 'NCHW',
                           """The data format for Convnet operations.
                           Can be either NHWC or NCHW.
                           """)

tf.app.flags.DEFINE_string('train_dir', '/train_model',
                           """Directory where to write event logs """
                           """and checkpoint.""")
35
tf.app.flags.DEFINE_integer('num_gpus', 4, """How many GPUs to use.""")
D
dangqingqing 已提交
36 37 38
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")

39 40 41
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
NUM_EPOCHS_PER_DECAY = 50
INITIAL_LEARNING_RATE = 0.1
D
dangqingqing 已提交
42 43 44 45 46 47
LEARNING_RATE_DECAY_FACTOR = 0.1
TOWER_NAME = 'tower'


def _conv(name, inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.005):
    with tf.name_scope(name) as scope:
48 49 50 51 52
        kernel = tf.get_variable(
            name + '_w', [kH, kW, nIn, nOut],
            initializer=tf.truncated_normal_initializer(
                stddev=0.01, dtype=tf.float32),
            dtype=tf.float32)
D
dangqingqing 已提交
53 54 55 56 57 58

        if wd is not None:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

        if FLAGS.data_format == 'NCHW':
59
            strides = [1, 1, dH, dW]
D
dangqingqing 已提交
60
        else:
61 62 63 64 65 66 67 68 69 70 71 72 73
            strides = [1, dH, dW, 1]
        conv = tf.nn.conv2d(
            inpOp,
            kernel,
            strides,
            padding=padType,
            data_format=FLAGS.data_format)

        biases = tf.get_variable(
            name=name + '_b',
            shape=[nOut],
            initializer=tf.constant_initializer(
                value=0.0, dtype=tf.float32),
D
dangqingqing 已提交
74 75 76
            dtype=tf.float32)

        bias = tf.reshape(
77 78
            tf.nn.bias_add(
                conv, biases, data_format=FLAGS.data_format),
D
dangqingqing 已提交
79 80 81 82 83
            conv.get_shape())

        conv1 = tf.nn.relu(bias, name=scope)
        return conv1

84

D
dangqingqing 已提交
85 86
def _affine(name, inpOp, nIn, nOut, wd=0.005, act=True):
    with tf.name_scope(name) as scope:
87 88 89 90
        kernel = tf.get_variable(
            name + '_w', [nIn, nOut],
            initializer=tf.truncated_normal_initializer(
                stddev=0.01, dtype=tf.float32),
D
dangqingqing 已提交
91 92 93 94 95 96
            dtype=tf.float32)

        if wd is not None:
            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
            tf.add_to_collection('losses', weight_decay)

97 98 99 100 101 102
        biases = tf.get_variable(
            name + '_b', [nOut],
            initializer=tf.constant_initializer(
                value=0.0, dtype=tf.float32),
            dtype=tf.float32,
            trainable=True)
D
dangqingqing 已提交
103 104 105 106 107 108

        affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
                  tf.matmul(inpOp, kernel) + biases

        return affine1

109

D
dangqingqing 已提交
110 111
def _mpool(name, inpOp, kH, kW, dH, dW):
    if FLAGS.data_format == 'NCHW':
112 113
        ksize = [1, 1, kH, kW]
        strides = [1, 1, dH, dW]
D
dangqingqing 已提交
114
    else:
115 116 117 118 119 120 121 122 123 124
        ksize = [1, kH, kW, 1]
        strides = [1, dH, dW, 1]
    return tf.nn.max_pool(
        inpOp,
        ksize=ksize,
        strides=strides,
        padding='VALID',
        data_format=FLAGS.data_format,
        name=name)

D
dangqingqing 已提交
125 126

def _norm(name, l_input, lsize=4):
127 128 129
    return tf.nn.lrn(l_input,
                     lsize,
                     bias=1.0,
D
dangqingqing 已提交
130
                     alpha=0.001 / 9.0,
131 132 133
                     beta=0.75,
                     name=name)

D
dangqingqing 已提交
134 135 136 137

def loss(logits, labels):
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
138
        logits, labels, name='cross_entropy_per_example')
D
dangqingqing 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

    # The total loss is defined as the cross entropy loss plus all of the weight
    # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')


def get_incoming_shape(incoming):
    """ Returns the incoming data shape """
    if isinstance(incoming, tf.Tensor):
        return incoming.get_shape().as_list()
    elif type(incoming) in [np.array, list, tuple]:
        return np.shape(incoming)
    else:
        raise Exception("Invalid incoming layer.")

156

D
dangqingqing 已提交
157
def inference(images):
158 159 160 161 162 163 164 165 166 167
    conv1 = _conv('conv1', images, 3, 96, 11, 11, 4, 4, 'VALID')
    pool1 = _mpool('pool1', conv1, 3, 3, 2, 2)
    norm1 = _norm('norm1', pool1, lsize=5)
    conv2 = _conv('conv2', norm1, 96, 256, 5, 5, 1, 1, 'SAME')
    pool2 = _mpool('pool2', conv2, 3, 3, 2, 2)
    norm2 = _norm('norm2', pool2, lsize=5)
    conv3 = _conv('conv3', norm2, 256, 384, 3, 3, 1, 1, 'SAME')
    conv4 = _conv('conv4', conv3, 384, 384, 3, 3, 1, 1, 'SAME')
    conv5 = _conv('conv5', conv4, 384, 256, 3, 3, 1, 1, 'SAME')
    pool5 = _mpool('pool5', conv5, 3, 3, 2, 2)
D
dangqingqing 已提交
168 169 170
    resh1 = tf.reshape(pool5, [-1, 256 * 6 * 6])
    affn1 = _affine('fc6', resh1, 256 * 6 * 6, 4096)
    affn2 = _affine('fc7', affn1, 4096, 4096)
171
    affn3 = _affine('fc8', affn2, 4096, 1000, wd=None, act=False)  # last fc
D
dangqingqing 已提交
172 173 174

    return affn3

175

D
dangqingqing 已提交
176 177 178 179 180 181 182 183 184 185 186 187
def tower_loss(scope):
    """Calculate the total loss on a single tower running the model.
    Args:
        scope: unique prefix string identifying the tower, e.g. 'tower_0'
    Returns:
        Tensor of shape [] containing the total loss for a batch of data
    """
    image_size = 224
    if FLAGS.data_format == 'NCHW':
        image_shape = [FLAGS.batch_size, 3, image_size + 3, image_size + 3]
    else:
        image_shape = [FLAGS.batch_size, image_size + 3, image_size + 3, 3]
188 189 190 191 192 193 194 195 196 197 198 199 200
    images = tf.get_variable(
        'image',
        image_shape,
        initializer=tf.truncated_normal_initializer(
            stddev=0.1, dtype=tf.float32),
        dtype=tf.float32,
        trainable=False)

    labels = tf.get_variable(
        'label', [FLAGS.batch_size],
        initializer=tf.constant_initializer(1),
        dtype=tf.int32,
        trainable=False)
D
dangqingqing 已提交
201 202 203 204 205 206 207 208

    # Build a Graph that computes the logits predictions from the
    # inference model.
    last_layer = inference(images)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = loss(last_layer, labels)
209

D
dangqingqing 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', l.op.name)
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
228
        tf.scalar_summary(loss_name + ' (raw)', l)
D
dangqingqing 已提交
229 230 231 232 233 234 235 236
        tf.scalar_summary(loss_name, loss_averages.average(l))

    with tf.control_dependencies([loss_averages_op]):
        total_loss = tf.identity(total_loss)
    return total_loss


def average_gradients(tower_grads):
237
    """Calculate the average gradient for each shared variable across all towers.
D
dangqingqing 已提交
238 239 240 241 242 243 244 245 246
  Note that this function provides a synchronization point across all towers.
  Args:
    tower_grads: List of lists of (gradient, variable) tuples. The outer list
      is over individual gradients. The inner list is over the gradient
      calculation for each tower.
  Returns:
     List of pairs of (gradient, variable) where the gradient has been averaged
     across all towers.
  """
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    average_grads = []
    for grad_and_vars in zip(*tower_grads):
        # Note that each grad_and_vars looks like the following:
        #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
        grads = []
        for g, _ in grad_and_vars:
            # Add 0 dimension to the gradients to represent the tower.
            expanded_g = tf.expand_dims(g, 0)

            # Append on a 'tower' dimension which we will average over below.
            grads.append(expanded_g)

        # Average over the 'tower' dimension.
        grad = tf.concat(0, grads)
        grad = tf.reduce_mean(grad, 0)

        # Keep in mind that the Variables are redundant because they are shared
        # across towers. So .. we will just return the first tower's pointer to
        # the Variable.
        v = grad_and_vars[0][1]
        grad_and_var = (grad, v)
        average_grads.append(grad_and_var)
    return average_grads

D
dangqingqing 已提交
271 272 273 274 275 276

def time_tensorflow_run(session, target):
    num_steps_burn_in = 50
    total_duration = 0.0
    total_duration_squared = 0.0
    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        start_time = time.time()
        _, loss_value = session.run(target)
        duration = time.time() - start_time
        if i > num_steps_burn_in:
            if not i % 10:
                num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = duration

                format_str = (
                    '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                    'sec/batch batch_size = %d)')
                print(format_str %
                      (datetime.now(), i - num_steps_burn_in, loss_value,
                       duration, sec_per_batch, num_examples_per_step))

            total_duration += duration
            total_duration_squared += duration * duration
D
dangqingqing 已提交
295 296 297 298

    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
299
    print('%s: FwdBwd across %d steps, %.3f +/- %.3f sec / batch' %
D
dangqingqing 已提交
300 301
          (datetime.now(), FLAGS.num_batches, mn, sd))

302

D
dangqingqing 已提交
303
def run_benchmark():
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    with tf.Graph().as_default(), tf.device('/cpu:0'):
        # Create a variable to count the number of train() calls. This equals the
        # number of batches processed * FLAGS.num_gpus.
        global_step = tf.get_variable(
            'global_step', [],
            initializer=tf.constant_initializer(0),
            trainable=False)

        # Calculate the learning rate schedule.
        num_batches_per_epoch = (NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
                                 FLAGS.batch_size)
        decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)

        # Decay the learning rate exponentially based on the number of steps.
        lr = tf.train.exponential_decay(
            INITIAL_LEARNING_RATE,
            global_step,
            decay_steps,
            LEARNING_RATE_DECAY_FACTOR,
            staircase=True)

        # Create an optimizer that performs gradient descent.
        opt = tf.train.MomentumOptimizer(lr, 0.9)

        # Calculate the gradients for each model tower.
        tower_grads = []
        for i in xrange(FLAGS.num_gpus):
            with tf.device('/gpu:%d' % i):
                with tf.name_scope('%s_%d' % (TOWER_NAME, i)) as scope:
                    # Calculate the loss for one tower of the model. This function
                    # constructs the entire model but shares the variables across
                    # all towers.
                    loss = tower_loss(scope)

                    # Reuse variables for the next tower.
                    tf.get_variable_scope().reuse_variables()

                    # Retain the summaries from the final tower.
                    summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)

                    # Calculate the gradients for the batch of data on this tower.
                    grads = opt.compute_gradients(loss)

                    # Keep track of the gradients across all towers.
                    tower_grads.append(grads)

        # We must calculate the mean of each gradient. Note that this is the
        # synchronization point across all towers.
        grads = average_gradients(tower_grads)

        # Apply the gradients to adjust the shared variables.
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

        # Group all updates to into a single train op.
        train_op = tf.group(apply_gradient_op)

        # Build an initialization operation.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph. allow_soft_placement must be set to
        # True to build towers on GPU, as some of the ops do not have GPU
        # implementations.
        sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)
        time_tensorflow_run(sess, [train_op, loss])
D
dangqingqing 已提交
371 372 373


def main(_):
374
    run_benchmark()
D
dangqingqing 已提交
375 376 377


if __name__ == '__main__':
378
    tf.app.run()