test_dygraph_mnist_fp16.py 4.1 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC


class SimpleImgConvPool(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 dtype='float32',
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__(name_scope)

        self._conv2d = Conv2D(
            self.full_name(),
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=param_attr,
            bias_attr=bias_attr,
            use_cudnn=use_cudnn,
            dtype=dtype,
            act=act)

        self._pool2d = Pool2D(
            self.full_name(),
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
    def __init__(self, name_scope, dtype="float32"):
        super(MNIST, self).__init__(name_scope)

        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            self.full_name(),
            num_filters=20,
            filter_size=5,
            pool_size=2,
            pool_stride=2,
            act="relu",
            dtype=dtype,
            use_cudnn=True)

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            self.full_name(),
            num_filters=50,
            filter_size=5,
            pool_size=2,
            pool_stride=2,
            act="relu",
            dtype=dtype,
            use_cudnn=True)

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax",
                      dtype=dtype)

    def forward(self, inputs, label):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        cost = self._fc(x)
        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)
        return avg_loss


class TestMnist(unittest.TestCase):
    def test_mnist_fp16(self):
        if not fluid.is_compiled_with_cuda():
            return
        x = np.random.randn(1, 3, 224, 224).astype("float16")
        y = np.random.randn(1, 1).astype("int64")
        with fluid.dygraph.guard(fluid.CUDAPlace(0)):
            model = MNIST("mnist", dtype="float16")
            x = fluid.dygraph.to_variable(x)
            y = fluid.dygraph.to_variable(y)
            print(model(x, y))


if __name__ == "__main__":
    unittest.main()