uniform_random_op.h 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
Y
yaoxuefeng 已提交
20
#include "paddle/fluid/framework/operator.h"
21 22 23 24 25 26 27 28
#if defined(__NVCC__) || defined(__HIPCC__)
DECLARE_bool(use_curand);
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/generator.h"
#include "paddle/phi/kernels/full_kernel.h"
29 30
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
31
#endif
32 33 34 35 36

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

37
inline std::vector<int64_t> GetNewDataFromShapeTensor(
38
    const Tensor* new_data_tensor) {
39 40
  if (framework::TransToProtoVarType(new_data_tensor->dtype()) ==
      framework::proto::VarType::INT64) {
41
    auto* new_data = new_data_tensor->data<int64_t>();
42
    framework::Tensor cpu_starts_tensor;
43
    if (platform::is_gpu_place(new_data_tensor->place())) {
44 45
      paddle::framework::TensorCopySync(*new_data_tensor, platform::CPUPlace(),
                                        &cpu_starts_tensor);
46 47 48 49 50
      new_data = cpu_starts_tensor.data<int64_t>();
    }
    std::vector<int64_t> vec_new_data(new_data,
                                      new_data + new_data_tensor->numel());
    return vec_new_data;
51 52
  } else if (framework::TransToProtoVarType(new_data_tensor->dtype()) ==
             framework::proto::VarType::INT32) {
53
    auto* new_data = new_data_tensor->data<int32_t>();
54
    std::vector<int64_t> vec_new_data;
55
    framework::Tensor cpu_starts_tensor;
56
    if (platform::is_gpu_place(new_data_tensor->place())) {
57 58
      paddle::framework::TensorCopySync(*new_data_tensor, platform::CPUPlace(),
                                        &cpu_starts_tensor);
59 60
      new_data = cpu_starts_tensor.data<int32_t>();
    }
61
    for (int i = 0; i < new_data_tensor->numel(); ++i) {
62 63 64 65
      vec_new_data.push_back(static_cast<int64_t>(*(new_data + i)));
    }
    return vec_new_data;
  } else {
66 67 68
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Expected dtype of ShapeTensor must be int32, int64. But got "
        "unsupport dtype: %s.",
69
        new_data_tensor->dtype()));
70 71 72
  }
}

73
inline std::vector<int64_t> GetNewDataFromShapeTensorList(
74
    const std::vector<const Tensor*>& list_new_shape_tensor) {
75 76 77 78
  std::vector<int64_t> vec_new_shape;
  vec_new_shape.reserve(list_new_shape_tensor.size());
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
79
    PADDLE_ENFORCE_EQ(
80
        tensor->dims(), phi::make_ddim({1}),
81 82 83 84
        platform::errors::InvalidArgument(
            "Shape of dim tensor in uniform_random_op should be [1]"
            "But received tensor's dim=%s.",
            tensor->dims()));
85

86 87
    if (framework::TransToProtoVarType(tensor->dtype()) ==
        framework::proto::VarType::INT32) {
88 89
      if (platform::is_gpu_place(tensor->place())) {
        framework::Tensor temp;
90
        paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(), &temp);
91 92 93 94
        vec_new_shape.push_back(static_cast<int64_t>(*temp.data<int32_t>()));
      } else {
        vec_new_shape.push_back(static_cast<int64_t>(*tensor->data<int32_t>()));
      }
95 96
    } else if (framework::TransToProtoVarType(tensor->dtype()) ==
               framework::proto::VarType::INT64) {
97 98
      if (platform::is_gpu_place(tensor->place())) {
        framework::Tensor temp;
99
        paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(), &temp);
100 101 102 103
        vec_new_shape.push_back(*temp.data<int64_t>());
      } else {
        vec_new_shape.push_back(*tensor->data<int64_t>());
      }
104
    } else {
105 106 107 108
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Expected dtype of ShapeTensorList of %d-th must be int32, int64. "
          "But got "
          "unsupport dtype: %s.",
109 110
          i, paddle::framework::DataTypeToString(
                 framework::TransToProtoVarType(tensor->dtype()))));
111 112 113 114 115
    }
  }

  return vec_new_shape;
}
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

#if defined(__NVCC__) || defined(__HIPCC__)

template <typename T>
struct UniformGenerator {
  T min_, max_;
  unsigned int seed_;
  T diag_val_;
  unsigned int diag_num_;
  unsigned int diag_step_;
  __host__ __device__ UniformGenerator(T min, T max, int seed, int diag_num,
                                       int diag_step, T diag_val)
      : min_(min),
        max_(max),
        seed_(seed),
        diag_num_(diag_num),
        diag_step_(diag_step),
        diag_val_(diag_val) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n);
    T out = dist(rng);
    unsigned int remainder = n % (diag_step_ + 1);
    if (remainder == 0 && diag_num_ > n / (diag_step_ + 1)) {
      out = diag_val_;
    }
    return out;
  }
};

template <typename T>
struct UniformGeneratorOffset {
  T min_, max_;
  unsigned int seed_;
  T diag_val_;
  unsigned int diag_num_;
  unsigned int diag_step_;
  int offset_;
  __host__ __device__ UniformGeneratorOffset(T min, T max, int seed,
                                             int diag_num, int diag_step,
                                             T diag_val, int offset)
      : min_(min),
        max_(max),
        seed_(seed),
        diag_num_(diag_num),
        diag_step_(diag_step),
        diag_val_(diag_val),
        offset_(offset) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n + offset_);
    T out = dist(rng);
    unsigned int remainder = n % (diag_step_ + 1);
    if (remainder == 0 && diag_num_ > n / (diag_step_ + 1)) {
      out = diag_val_;
    }
    return out;
  }
};

template <typename T>
void UniformRandom(const framework::ExecutionContext& context,
                   framework::Tensor* tensor) {
  int64_t size = tensor->numel();
  auto& dev_cxt =
      context.template device_context<platform::CUDADeviceContext>();
  T* data = tensor->mutable_data<T>(dev_cxt.GetPlace());
  if (size <= 0) return;
  unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
  bool seed_flag = false;
  if (seed == 0) {
    std::random_device rd;
    seed = rd();
    seed_flag = true;
  }

  T min = static_cast<T>(context.Attr<float>("min"));
  T max = static_cast<T>(context.Attr<float>("max"));
  unsigned int diag_num =
      static_cast<unsigned int>(context.Attr<int>("diag_num"));
  unsigned int diag_step =
      static_cast<unsigned int>(context.Attr<int>("diag_step"));
  T diag_val = static_cast<T>(context.Attr<float>("diag_val"));
  int device_id = context.GetPlace().GetDeviceId();
  auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
  if (gen_cuda->GetIsInitPy() && seed_flag) {
    if (FLAGS_use_curand) {
      using MT = typename details::MPTypeTrait<T>::Type;
210 211 212
      phi::funcs::uniform_distribution<MT> dist;
      phi::funcs::uniform_real_transform<MT> trans(min, max);
      phi::funcs::distribution_and_transform<T>(dev_cxt, tensor, dist, trans);
213 214 215 216 217 218
    } else {
      auto seed_offset = gen_cuda->IncrementOffset(1);
      int64_t gen_offset = size * seed_offset.second;
      auto func =
          UniformGeneratorOffset<T>(min, max, seed_offset.first, diag_num,
                                    diag_step, diag_val, gen_offset);
219
      phi::IndexKernel<T, UniformGeneratorOffset<T>>(dev_cxt, tensor, func);
220 221 222 223
    }
  } else {
    auto func =
        UniformGenerator<T>(min, max, seed, diag_num, diag_step, diag_val);
224
    phi::IndexKernel<T, UniformGenerator<T>>(dev_cxt, tensor, func);
225 226 227
  }
}
#endif
228 229
}  // namespace operators
}  // namespace paddle