selected_rows.h 4.2 KB
Newer Older
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Q
qijun 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
qijun 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Q
qijun 已提交
9 10 11 12 13 14 15
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16

Y
Yancey1989 已提交
17
#include <algorithm>
18 19
#include <vector>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
Q
qijun 已提交
22 23 24 25 26

namespace paddle {
namespace framework {

class SelectedRows {
Y
Yancey1989 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
  /*
   * @brief We can use the SelectedRows structure to reproduce a sparse table.
   *  A sparse table is a key-value structure that the key is an `int64_t`
   * number,
   *  and the value is a Tensor which the first dimension is 0.
   *  You can use the following interface to operate the sparse table, and you
   * can find
   *  some detail information from the comments of each interface:
   *
   *  HasKey(key), whether the sparse table has the specified key.
   *  Set(key, value), set a key-value pair into the sparse table.
   *  Get(key, value*, offset), get a value by key and apply it to the given
   * value pointer
   *    with the specified offset.
   *
   */
Q
qijun 已提交
43 44 45 46 47 48
 public:
  SelectedRows(const std::vector<int64_t>& rows, const int64_t& height)
      : rows_(rows), height_(height) {
    value_.reset(new Tensor());
  }

Q
QI JUN 已提交
49 50 51 52
  SelectedRows() {
    height_ = 0;
    value_.reset(new Tensor());
  }
Q
qijun 已提交
53 54 55

  platform::Place place() const { return value_->place(); }

Q
qijun 已提交
56 57 58
  const Tensor& value() const { return *value_; }

  Tensor* mutable_value() { return value_.get(); }
Q
qijun 已提交
59 60 61 62 63

  int64_t height() const { return height_; }

  void set_height(int64_t height) { height_ = height; }

Q
qijun 已提交
64
  const Vector<int64_t>& rows() const { return rows_; }
Q
qijun 已提交
65

Q
QI JUN 已提交
66 67
  Vector<int64_t>* mutable_rows() { return &rows_; }

Q
qijun 已提交
68
  void set_rows(const Vector<int64_t>& rows) { rows_ = rows; }
Q
qijun 已提交
69

Y
Yancey1989 已提交
70 71 72 73
  /*
   * @brief wheter has the specified key in the table.
   *
   * @return true if the key is exists.
Q
qiaolongfei 已提交
74
   */
Y
Yancey1989 已提交
75 76 77 78 79 80
  bool HasKey(int64_t key) const;

  /*
   * @brief Get a value by the specified key, if the
   * key does not exists, this function would throw an exception.
   *
Y
update  
Yancey1989 已提交
81
   * @return true if the Get operation successed.
Y
Yancey1989 已提交
82
   */
Y
update  
Yancey1989 已提交
83

Y
Yancey1989 已提交
84
  bool Get(int64_t key, framework::Tensor* tensor, int64_t offset = 0) const;
Y
Yancey1989 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

  /*
   * @brief Set a key-value pair into the table.
   *  This function will double the value memory if it's not engouth.
   *
   * @note:
   *    1. The first dim of the value should be 1
   *    2. The value should be initialized and the data type
   *       should be the same with the table.
   *
   * @return true if the key is a new one, otherwise false
   *
   */
  bool Set(int64_t key, const Tensor& value);

  /*
   * @brief Get the index of key in rows
   *
   * @return -1 if the key does not exists.
   */
  int64_t Index(int64_t key) const {
    auto it = std::find(rows_.begin(), rows_.end(), key);
    if (it == rows_.end()) {
      return static_cast<int64_t>(-1);
    }
Q
qiaolongfei 已提交
110 111 112
    return static_cast<int64_t>(std::distance(rows_.begin(), it));
  }

Q
qijun 已提交
113 114 115 116 117 118 119
  DDim GetCompleteDims() const {
    std::vector<int64_t> dims = vectorize(value_->dims());
    dims[0] = height_;
    return make_ddim(dims);
  }

 private:
Q
qijun 已提交
120
  // Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9} here.
121
  // SelectedRows are simply concated when adding together. Until a
Q
qijun 已提交
122
  // SelectedRows add a Tensor, will the duplicate rows be handled.
Q
qijun 已提交
123
  Vector<int64_t> rows_;
Q
qijun 已提交
124 125 126 127
  std::unique_ptr<Tensor> value_{nullptr};
  int64_t height_;
};

128 129 130 131 132 133 134
/*
 * Serialize/Desiralize SelectedRows to std::ostream
 * You can pass ofstream or ostringstream to serilize to file
 * or to a in memory string. GPU tensor will be copied to CPU.
 */
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
                       const platform::DeviceContext& dev_ctx);
Y
Yancey 已提交
135 136
void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows,
                           const platform::DeviceContext& dev_ctx);
137

Q
qijun 已提交
138 139
}  // namespace framework
}  // namespace paddle