cond_op.h 7.9 KB
Newer Older
Z
cond op  
zchen0211 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <vector>
#include "glog/logging.h"
#include "paddle/framework/ddim.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/gather.h"
#include "paddle/operators/scatter.h"

namespace paddle {
namespace operators {

using namespace paddle::framework;

class CondOp : public OperatorBase {
 public:
  CondOp(const std::string& type, const VariableNameMap& inputs,
         const VariableNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {
    index_.resize(2);
    sub_net_op_.resize(2);
    LOG(INFO) << "Initialization Done.";
  }

  CondOp(const CondOp& o)
      : framework::OperatorBase(
            static_cast<const framework::OperatorBase&>(o)) {
    // TODO(yuyang18): Implement copy ctor well.
    PADDLE_THROW("Not implemented");
  }

  void CreateScope(const Scope& scope) const {
    auto sub_scopes_var = scope.FindVar("SubScopes");
    PADDLE_ENFORCE(sub_scopes_var != nullptr, "");
    auto sub_scopes = sub_scopes_var->GetMutable<std::vector<Scope*>>();
    auto& sub_scope = scope.NewScope();
    sub_scopes->push_back(&sub_scope);
  }

  void CreateIndexTensor(const Scope& scope) const {
    auto index_tensors_var = scope.FindVar("IndexTensors");
    PADDLE_ENFORCE(index_tensors_var != nullptr, "");
    auto& index_tensors =
        *index_tensors_var->GetMutable<std::vector<Tensor*>>();
    Tensor index_tensor;
    index_tensors.push_back(&index_tensor);
  }

  /**
   * InferShape must be called before Run.
   */
  void InferShape(const framework::Scope& scope) const override {
    auto sub_scopes_var = scope.FindVar("SubScopes");
    PADDLE_ENFORCE_NOT_NULL(sub_scopes_var);
    auto& sub_scopes = *sub_scopes_var->GetMutable<std::vector<Scope*>>();
    // auto& index_tensors =
    // *scope.FindVar("IndexTensors")->GetMutable<std::vector<Tensor*>>();

    for (int i = 0; i < 2; ++i) {
      // Create two sub scopes for true and false branches
      // sub_scopes[0] for the true branch and sub_scopes[1] for the false
      // branch
      CreateScope(scope);

      // Create two tensors for true and false indices
      // index_tensors[0] for the true branch and index_tensors[1] for the false
      // branch
      CreateIndexTensor(scope);

      for (auto& input : Inputs("Xs")) {
        // Create a new tensor in sub-scope for input-type tensor
        Variable* v = sub_scopes[i]->NewVar(input);
        Tensor* sub_input = v->GetMutable<Tensor>();
        sub_input->Resize(scope.FindVar(input)->GetMutable<Tensor>()->dims());
      }

      // Inputs that do not require tailoring
      /*for (auto& input : (*sub_net_op_[i]).Inputs()) {
        // weights are located in the parent scope rather than sub scope
        for (auto& var_name : input.second) {
          if (!sub_scopes[i]->FindVar(var_name)) {
            sub_scopes[i]->NewVar(var_name)->GetMutable<Tensor>();
          }
        }
      }*/

      // Outputs
      for (auto& output : (*sub_net_op_[i]).Outputs()) {
        for (auto& var_name : output.second) {
          sub_scopes[i]->NewVar(var_name);
        }
      }

      // each net calls InferShape
      LOG(INFO) << "OK 3";
      sub_net_op_[i]->InferShape(*sub_scopes[i]);
      LOG(INFO) << "OK 4";
    }

    for (auto& output : Outputs("Outs")) {
      Tensor* tensor_t_out =
          sub_scopes[0]->FindVar(output)->GetMutable<Tensor>();
      Tensor* tensor_f_out =
          sub_scopes[1]->FindVar(output)->GetMutable<Tensor>();
      Tensor* tensor_out = scope.FindVar(output)->GetMutable<Tensor>();
      // check output size should be same
      PADDLE_ENFORCE_EQ(tensor_t_out->dims(), tensor_f_out->dims(),
                        "Outputs not of the same shape");
      tensor_out->Resize(tensor_t_out->dims());
    }
    LOG(INFO) << "OK 5";
  }

  // Set True Block
  void set_truenet(std::unique_ptr<OperatorBase> net) {
    sub_net_op_[0] = std::move(net);
  }

  // Set False Block
  void set_falsenet(std::unique_ptr<OperatorBase> net) {
    sub_net_op_[1] = std::move(net);
  }

  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {
    auto sub_scopes = scope.FindVar("SubScopes")->Get<std::vector<Scope*>>();
    auto index_tensors =
        scope.FindVar("IndexTensors")->Get<std::vector<Tensor*>>();

    std::string cond_name = Input("Cond");
    Variable* cond_var = scope.FindVar(cond_name);
    PADDLE_ENFORCE_NOT_NULL(cond_var)
    const Tensor* cond = cond_var->GetMutable<Tensor>();

    // Step 1: get the true/false index at runtime
    // index_[0]: vector<int>, contains all index for cond[i] == true
    // index_[1]: vector<int>, contains all index for cond[i] == false
    for (int i = 0; i < 2; ++i) index_[i].clear();

    const bool* cond_data = cond->data<bool>();
    for (int i = 0; i < cond->dims()[0]; ++i) {
      if (cond_data[i])
        index_[0].push_back(i);
      else
        index_[1].push_back(i);
    }
    // put index_[0] and index_[1] into two tensors:
    // index_tensor_[0] and index_tensor_[1]
    framework::DDim dim = paddle::framework::make_ddim({0});
    for (int i = 0; i < 2; ++i) {
      dim[0] = index_[i].size();
      int* tmp_ptr =
          index_tensors[i]->mutable_data<int>(dim, platform::CPUPlace());
      index_tensors[i]->Resize(dim);
      memcpy(tmp_ptr, index_[i].data(), dim[0] * sizeof(int));
    }

    // Step 2: collect data by calling gather
    for (int i = 0; i < 2; ++i) {
      // i= 0/i for True and False branches respectively
      for (auto& input : Inputs("Xs")) {
        // find Tensor
        // Tensor* tensor_parent = scope.FindVar(input)->GetMutable<Tensor>();
        Variable* v = scope.FindVar(input);
        Tensor* tensor_parent = v->GetMutable<Tensor>();
        // Tensor* tensor_child =
        // sub_scope_[i].FindVar(input)->GetMutable<Tensor>();
        v = sub_scopes[i]->FindVar(input);
        Tensor* tensor_child = v->GetMutable<Tensor>();
        Gather<float>(dev_ctx.GetPlace(), tensor_parent, index_tensors[i],
                      tensor_child);
      }
    }

    // Step 3: run
    for (int i = 0; i < 2; ++i) sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx);

    // Step 4: merge output results
    for (int i = 0; i < 2; ++i) {
      // i= 0/i for True and False branches respectively
      // for (auto& output : GetAttr<std::vector<std::string>>("sub_outputs")) {
      for (auto& output : Outputs("Outs")) {
        // find Tensor
        Variable* v = scope.FindVar(output);
        Tensor* tensor_parent = v->GetMutable<Tensor>();
        v = sub_scopes[i]->FindVar(output);
        Tensor* tensor_child = v->GetMutable<Tensor>();
        ScatterUpdate<float>(dev_ctx.GetPlace(), tensor_child, index_tensors[i],
                             tensor_parent);
      }
    }
  }

 private:
  // sub_net_op_[0]: subnet_t
  // sub_net_op_[1]: subnet_f
  std::vector<std::unique_ptr<framework::OperatorBase>> sub_net_op_;

  // index_[0]: True_index;
  // index_[1]: False_index;
  mutable std::vector<std::vector<int>> index_;
};

/*
class CondGradientOp final : public OperatorBase {
public:
        void Init() override;

        virtual void InferShape(const std::shared_ptr<Scope>& scope) const
override;

        virtual void Run(const std::shared_ptr<Scope>& scope,
                   const platform::DeviceContext& dev_ctx) const override;
};*/

}  // namespace operators
}  // namespace paddle