heter_comm.h 10.0 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
Thunderbrook 已提交
16
#include <thread>
T
Thunderbrook 已提交
17
#include <vector>
18

Y
yaoxuefeng 已提交
19 20
#include "cub/cub.cuh"
#include "cub/util_allocator.cuh"
21
#if defined(PADDLE_WITH_CUDA)
T
Thunderbrook 已提交
22
#include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h"
T
Thunderbrook 已提交
23
#include "paddle/fluid/platform/cuda_device_guard.h"
24
#include "paddle/fluid/platform/dynload/nccl.h"
Y
yaoxuefeng 已提交
25
#include "paddle/fluid/platform/timer.h"
T
Thunderbrook 已提交
26
#include "thrust/pair.h"
27
#elif defined(PADDLE_WITH_XPU_KP)
28
// #include "paddle/fluid/framework/fleet/heter_ps/optimizer_conf.h"
29
#include <xpu/runtime.h>
30

31 32 33 34 35 36 37 38 39
#include "paddle/fluid/platform/device/xpu/enforce_xpu.h"
#endif

#include "paddle/fluid/framework/fleet/heter_ps/hashtable.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/place.h"
T
Thunderbrook 已提交
40

T
Thunderbrook 已提交
41
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
42 43 44 45

namespace paddle {
namespace framework {

Y
yaoxuefeng 已提交
46 47 48
#define TYPEALIGN(ALIGNVAL, LEN) \
  (((uint64_t)(LEN) + ((ALIGNVAL)-1)) & ~((uint64_t)((ALIGNVAL)-1)))

D
danleifeng 已提交
49 50 51 52
template <typename KeyType,
          typename ValType,
          typename GradType,
          typename FVAccessor>
T
Thunderbrook 已提交
53 54 55 56 57 58 59
class HeterComm {
 public:
  HeterComm(size_t capacity, std::shared_ptr<HeterPsResource> resource);
  virtual ~HeterComm();
  HeterComm(const HeterComm&) = delete;
  HeterComm& operator=(const HeterComm&) = delete;

60 61 62 63 64 65 66 67 68 69
  void split_input_to_shard(KeyType* d_keys,
                            int* d_idx_ptr,
                            size_t len,
                            int* left,
                            int* right,
                            int gpu_num);
  void merge_grad(int gpu_num,
                  KeyType* d_keys,
                  GradType* d_grads,
                  size_t len,
70
                  int& uniq_len);  // NOLINT
D
danleifeng 已提交
71 72 73
  void dynamic_merge_grad(
      int gpu_num, KeyType* d_keys, float* d_grads, size_t len, int& uniq_len);
  void pull_sparse(int num, KeyType* d_keys, float* d_vals, size_t len);
74 75 76 77 78 79 80 81 82 83 84 85 86
  void build_ps(int num,
                KeyType* h_keys,
                ValType* h_vals,
                size_t len,
                size_t chunk_size,
                int stream_num);
  void build_ps(int num,
                KeyType* h_keys,
                char* pool,
                size_t len,
                size_t feature_value_size,
                size_t chunk_size,
                int stream_num);
T
Thunderbrook 已提交
87 88 89 90
  void dump();
  void show_one_table(int gpu_num);
  int get_index_by_devid(int devid);

91
#if defined(PADDLE_WITH_CUDA)
T
Thunderbrook 已提交
92
  template <typename Sgd>
93 94
  void push_sparse(int num,
                   KeyType* d_keys,
D
danleifeng 已提交
95
                   float* d_grads,
96
                   size_t len,
97
                   Sgd& sgd);  // NOLINT
98 99 100 101
#elif defined(PADDLE_WITH_XPU_KP)
  void push_sparse(int num, KeyType* d_keys, GradType* d_grads, size_t len);
#endif

102 103 104
  void set_sparse_sgd(const OptimizerConfig& optimizer_config);
  void set_embedx_sgd(const OptimizerConfig& optimizer_config);

105
  int log2i(int x);
T
Thunderbrook 已提交
106

107
  template <typename DstPlace, typename SrcPlace, typename StreamType>
108 109 110 111 112 113
  void memory_copy(DstPlace dst_place,
                   void* dst,
                   SrcPlace src_place,
                   const void* src,
                   size_t count,
                   StreamType stream = 0);
114 115

#if defined(PADDLE_WITH_CUDA)
116
  template <typename Sgd>
117 118 119 120 121
  void push_sparse_multi_node(int num,
                              KeyType* d_keys,
                              GradType* d_grads,
                              size_t len,
                              Sgd& sgd);  // NOLINT
122 123

  template <typename Sgd>
124 125 126 127
  void update_one_table(int num,
                        KeyType* d_keys,
                        GradType* d_grads,
                        size_t len,
128
                        Sgd& sgd);  // NOLINT
129

130 131 132
  int gather_one_node_grad(int num,
                           KeyType* d_keys,
                           GradType* d_grads,
133 134
                           int len);

135 136 137
  int gather_multi_node_grad(int num,
                             KeyType* d_keys,
                             GradType* d_grads,
138 139 140 141 142 143 144 145 146
                             int len);

  void set_nccl_comm_and_size(const std::vector<ncclComm_t>& inner_comms,
                              const std::vector<ncclComm_t>& inter_comms,
                              int comm_size) {
    nccl_inner_comms_ = inner_comms;
    nccl_inter_comms_ = inter_comms;
    node_size_ = comm_size;
  }
Y
yaoxuefeng 已提交
147 148 149 150 151

  void set_multi_mf_dim(int multi_mf_dim, int max_mf_dim) {
    multi_mf_dim_ = multi_mf_dim;
    max_mf_dim_ = max_mf_dim;
  }
D
danleifeng 已提交
152 153 154 155 156 157 158

  void set_accessor(FVAccessor& accessor) {
    feature_value_accessor_ = accessor;
    //  for (auto& ptr_table: ptr_tables_) {
    //    ptr_table->set_accessor(feature_value_accessor_);
    //  }
  }
159
#endif
160

161 162 163 164
  bool need_transfer(int send_id, int receive_id) {
    return ((send_id / 4 != receive_id / 4) && (send_id + 4) % 8 != receive_id);
  }

T
Thunderbrook 已提交
165 166
  // void dump_to_cpu(int index);

167 168
  int get_transfer_devid(int send_id) { return (send_id + 4) % 8; }

169 170
  void end_pass();

171
  struct Node {
172 173
    ppStream in_stream;
    ppStream out_stream;
174 175 176
    char* key_storage;
    char* val_storage;
    int sync;
Y
yaoxuefeng 已提交
177 178
    size_t key_bytes_len;
    size_t val_bytes_len;
179
    int dev_num;
180 181 182 183 184 185
  };

  struct Path {
    std::vector<Node> nodes_;
  };

186 187 188 189 190 191
  struct CopyTask {
    Path* path;
    int step;
    CopyTask(Path* path_, int step_) : path(path_), step(step_) {}
  };

192 193 194 195 196 197 198
  struct LocalStorage {
    LocalStorage() {}
    void init(int size, int dev_id) {
      place_ = platform::CUDAPlace(dev_id);
      alloc(size, true);
    }

199
    void alloc(size_t size, bool force = false) {
200 201 202
      if (force || size > all_keys_mem->size()) {
        all_keys_mem.reset();
        all_grads_mem.reset();
203 204
        all_keys_mem = memory::Alloc(place_, size * sizeof(KeyType));
        all_grads_mem = memory::Alloc(place_, size * sizeof(GradType));
205 206 207 208 209 210
        all_keys = reinterpret_cast<KeyType*>(all_keys_mem->ptr());
        all_grads = reinterpret_cast<GradType*>(all_grads_mem->ptr());
      }
      if (force || size > local_keys_mem->size()) {
        local_keys_mem.reset();
        local_grads_mem.reset();
211 212
        local_keys_mem = memory::Alloc(place_, size * sizeof(KeyType));
        local_grads_mem = memory::Alloc(place_, size * sizeof(GradType));
213 214 215 216 217
        local_keys = reinterpret_cast<KeyType*>(local_keys_mem->ptr());
        local_grads = reinterpret_cast<GradType*>(local_grads_mem->ptr());
      }
    }

218
#if defined(PADDLE_WITH_CUDA)
219
    platform::CUDAPlace place_;
F
Fan Zhang 已提交
220

221 222 223
#elif defined(PADDLE_WITH_XPU_KP)
    platform::XPUPlace place_;
#endif
224 225
    std::shared_ptr<memory::Allocation> all_keys_mem;
    std::shared_ptr<memory::Allocation> all_grads_mem;
F
Fan Zhang 已提交
226

227 228 229 230 231 232 233 234 235
    KeyType* all_keys;
    GradType* all_grads;

    std::shared_ptr<memory::Allocation> local_keys_mem;
    std::shared_ptr<memory::Allocation> local_grads_mem;
    KeyType* local_keys;
    GradType* local_grads;
  };

236
  void init_path();
T
Thunderbrook 已提交
237

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  template <typename StreamType>
  void sync_stream(const StreamType& stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_wait(stream));
#endif
  }

  template <typename StreamType>
  void create_stream(StreamType* stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamCreate(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_stream_create(stream));
#endif
  }

  template <typename StreamType>
  void destroy_stream(StreamType stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamDestroy(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_stream_destroy(stream));
#endif
  }

T
Thunderbrook 已提交
265 266
  void create_storage(int start_index, int end_index, int keylen, int vallen);
  void destroy_storage(int start_index, int end_index);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  void walk_to_dest(int start_index,
                    int gpu_num,
                    int* h_left,
                    int* h_right,
                    KeyType* src_key,
                    GradType* src_val);
  void walk_to_dest(int start_index,
                    int gpu_num,
                    int* h_left,
                    int* h_right,
                    KeyType* src_key,
                    char* src_val,
                    size_t val_size);
  void walk_to_src(int start_index,
                   int gpu_num,
                   int* h_left,
                   int* h_right,
284
                   ValType* src_val);
285 286 287 288 289 290
  void walk_to_src(int start_index,
                   int gpu_num,
                   int* h_left,
                   int* h_right,
                   char* src_val,
                   size_t val_size);
T
Thunderbrook 已提交
291

D
danleifeng 已提交
292 293
  FVAccessor feature_value_accessor_;

S
seemingwang 已提交
294
 protected:
T
Thunderbrook 已提交
295
  using Table = HashTable<KeyType, ValType>;
D
danleifeng 已提交
296
  using PtrTable = HashTable<KeyType, float*>;
T
Thunderbrook 已提交
297
  std::vector<Table*> tables_;
Y
yaoxuefeng 已提交
298
  std::vector<PtrTable*> ptr_tables_;
T
Thunderbrook 已提交
299
  std::shared_ptr<HeterPsResource> resource_;
300
  std::vector<std::vector<Path>> path_;
S
seemingwang 已提交
301 302
  float load_factor_{0.75};
  int block_size_{256};
S
seemingwang 已提交
303
  std::unique_ptr<HeterCommKernel> heter_comm_kernel_;
S
seemingwang 已提交
304 305

 private:
S
seemingwang 已提交
306
  int topo_aware_{0};
307
  std::vector<LocalStorage> storage_;
Y
yaoxuefeng 已提交
308
  DynamicGradMerger merger_;
309
  int feanum_{1800 * 2048};
T
Thunderbrook 已提交
310
  int multi_node_{0};
311 312 313
  int node_size_;

#if defined(PADDLE_WITH_CUDA)
314 315
  std::vector<ncclComm_t> nccl_inner_comms_;
  std::vector<ncclComm_t> nccl_inter_comms_;
Y
yaoxuefeng 已提交
316 317
  int multi_mf_dim_{8};
  int max_mf_dim_ = 8;
T
Thunderbrook 已提交
318
  std::vector<std::shared_ptr<cub::CachingDeviceAllocator>> allocators_;
319
#endif
T
Thunderbrook 已提交
320 321 322 323
};

}  // end namespace framework
}  // end namespace paddle
F
Fan Zhang 已提交
324

T
Thunderbrook 已提交
325
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h"
F
Fan Zhang 已提交
326

T
Thunderbrook 已提交
327
#endif