common_sparse_table.h 3.5 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ThreadPool.h>
#include <assert.h>
#include <pthread.h>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "Eigen/Dense"
#include "paddle/fluid/distributed/table/accessor.h"
#include "paddle/fluid/distributed/table/common_table.h"
#include "paddle/fluid/distributed/table/depends/initializers.h"
#include "paddle/fluid/distributed/table/depends/large_scale_kv.h"
#include "paddle/fluid/distributed/table/depends/sparse.h"
#include "paddle/fluid/framework/rw_lock.h"
#include "paddle/fluid/string/string_helper.h"

namespace paddle {
namespace distributed {

38 39
class SparseOptimizer;

T
tangwei12 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
class CommonSparseTable : public SparseTable {
 public:
  CommonSparseTable() { rwlock_.reset(new framework::RWLock); }
  virtual ~CommonSparseTable() {}

  // unused method begin
  virtual int32_t pull_dense(float* pull_values, size_t num) { return 0; }
  virtual int32_t push_dense_param(const float* values, size_t num) {
    return 0;
  }
  virtual int32_t push_dense(const float* values, size_t num) { return 0; }
  // unused method end

  virtual int32_t initialize();
  virtual int32_t initialize_shard() { return 0; }
  virtual int32_t initialize_value();
  virtual int32_t initialize_optimizer();
  virtual int32_t initialize_recorder();

  int32_t load(const std::string& path, const std::string& param);

  int32_t save(const std::string& path, const std::string& param);

  virtual std::pair<int64_t, int64_t> print_table_stat();
  virtual int32_t pull_sparse(float* pull_values, const uint64_t* keys,
                              size_t num);

  virtual int32_t push_sparse(const uint64_t* keys, const float* values,
                              size_t num);

  // only for sparse geo table
  virtual int32_t push_sparse_param(const uint64_t* keys, const float* values,
                                    size_t num);

74 75
  virtual int32_t set_global_lr(float* lr) override;

T
tangwei12 已提交
76 77
  virtual int32_t pour();
  virtual int32_t flush();
78
  virtual int32_t shrink(const std::string& param);
T
tangwei12 已提交
79 80 81 82 83 84 85 86 87 88 89 90
  virtual void clear();

 protected:
  virtual int32_t _push_sparse(const uint64_t* keys, const float* values,
                               size_t num);

 private:
  const int task_pool_size_ = 11;
  std::vector<std::shared_ptr<::ThreadPool>> _shards_task_pool;

  bool sync = false;
  int param_dim_ = 0;
T
tangwei12 已提交
91 92 93 94 95 96 97 98
  int param_offset_ = 0;

  std::unordered_map<std::string, int> value_idx_;
  std::vector<std::string> value_names_;
  std::vector<int> value_dims_;
  std::vector<int> value_offsets_;
  std::vector<std::string> initializer_attrs_;

T
tangwei12 已提交
99 100 101 102 103 104 105 106
  std::shared_ptr<SparseOptimizer> optimizer_;
  std::vector<std::shared_ptr<ValueBlock>> shard_values_;
  std::unordered_map<uint64_t, ReservoirValue<float>> pull_reservoir_;
  std::unique_ptr<framework::RWLock> rwlock_{nullptr};
};

}  // namespace distributed
}  // namespace paddle