test_gru_op.py 5.9 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
import unittest
import numpy as np
import math
from op_test import OpTest

SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0


def identity(x):
    return x


def sigmoid(x):
    y = np.copy(x)
    y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
    y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
    return 1. / (1. + np.exp(-y))


def tanh(x):
    y = -2. * x
    y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
    return (2. / (1. + np.exp(y))) - 1.


def relu(x):
    return np.maximum(x, 0)


class TestGRUOp(OpTest):
    batch_size = 9
    frame_size = 5
    activate = {
        'identity': identity,
        'sigmoid': sigmoid,
        'tanh': tanh,
        'relu': relu
    }

    @staticmethod
    def seq_to_batch(lod, is_reverse):
        idx_in_seq_list = []
        seq_starts = lod[0]
        seq_lens = []
        for i in range(len(seq_starts) - 1):
            seq_lens.append(seq_starts[i + 1] - seq_starts[i])
        sorted_seqs = sorted(
            range(len(seq_lens)), lambda x, y: seq_lens[y] - seq_lens[x])
        num_batch = seq_lens[sorted_seqs[0]]
        for batch_idx in range(num_batch):
            idx_in_seq = []
            for i in range(len(seq_lens)):
                if seq_lens[sorted_seqs[i]] <= batch_idx:
                    break
                idx = (seq_starts[sorted_seqs[i] + 1] - 1 - batch_idx
                       ) if is_reverse else (
                           seq_starts[sorted_seqs[i]] + batch_idx)
                idx_in_seq.append(idx)
            idx_in_seq_list.append(idx_in_seq)
        return idx_in_seq_list

    def gru_step(self, x, h_p, w, b):
        print x.shape, h_p.shape, w.shape, b.shape
        batch_size = x.shape[0]
        frame_size = w.shape[0]
        g = x + np.tile(b, (batch_size, 1))
        w_u_r = w.flatten()[:frame_size * frame_size * 2].reshape(
            (frame_size, frame_size * 2))
        u_r = self.activate[self.attrs['gate_activation']](np.dot(
            h_p, w_u_r) + g[:, :frame_size * 2])
        u = u_r[:, :frame_size]
        r = u_r[:, frame_size:frame_size * 2]
        r_h_p = r * h_p
        w_c = w.flatten()[frame_size * frame_size * 2:].reshape(
            (frame_size, frame_size))
        c = self.activate[self.attrs['activation']](np.dot(r_h_p, w_c) +
                                                    g[:, frame_size * 2:])
        g = np.hstack((u_r, c))
        h = u * c + (1 - u) * h_p
        return g, r_h_p, h

    def gru(self):
        input, lod = self.inputs['Input']
        w = self.inputs['Weight']
        b = self.inputs['Bias'] if self.inputs.has_key('Bias') else np.zeros(
            (1, self.frame_size * 3))
        batch_gate = self.outputs['BatchGate']
        batch_reset_hidden_prev = self.outputs['BatchResetHiddenPrev']
        batch_hidden = self.outputs['BatchHidden']
        hidden = self.outputs['Hidden']
        idx_in_seq_list = self.idx_in_seq_list
        h_p = self.inputs['H0'] if self.inputs.has_key('H0') else np.zeros(
            (len(idx_in_seq_list[0]), self.frame_size))
        num_batch = len(idx_in_seq_list)
        end_idx = 0
        for batch_idx in range(num_batch):
            print idx_in_seq_list[batch_idx]
            x = input[idx_in_seq_list[batch_idx]]
            g, r_h_p, h = self.gru_step(x, h_p, w, b)
            if batch_idx < (num_batch - 1):
                h_p = h[:len(idx_in_seq_list[batch_idx + 1])]
            start_idx = end_idx
            end_idx = start_idx + len(idx_in_seq_list[batch_idx])
            batch_gate[start_idx:end_idx] = g
            batch_reset_hidden_prev[start_idx:end_idx] = r_h_p
            batch_hidden[start_idx:end_idx] = h
            hidden[idx_in_seq_list[batch_idx]] = h
        return batch_gate, batch_reset_hidden_prev, hidden

    def set_data(self):
        lod = [[0, 2, 6, 9]]  #[[0, 1, 2, 3]]
        self.idx_in_seq_list = self.seq_to_batch(lod, self.is_reverse)
        print self.idx_in_seq_list
        batch_size = self.batch_size
        frame_size = self.frame_size
        input = np.random.rand(batch_size, frame_size * 3).astype('float64')
        h0 = np.random.rand(len(self.idx_in_seq_list[0]),
                            frame_size).astype('float64')
        weight = np.random.rand(frame_size, frame_size * 3).astype('float64')
        bias = np.random.rand(1, frame_size * 3).astype('float64')

        self.inputs = {
            'Input': (input, lod),
            'H0': h0,
            'Weight': weight,
            'Bias': bias
        }

        self.outputs = {
            'BatchGate': np.zeros(
                (batch_size, frame_size * 3), dtype='float64'),
            'BatchResetHiddenPrev': np.zeros(
                (batch_size, frame_size), dtype='float64'),
            'BatchHidden': np.zeros(
                (batch_size, frame_size), dtype='float64'),
            'Hidden': np.zeros(
                (batch_size, frame_size), dtype='float64')
        }

    def set_confs(self):
        self.is_reverse = False
        self.attrs = {
            'activation': 'tanh',
            'gate_activation': 'sigmoid',
            'is_reverse': self.is_reverse
        }

    def setUp(self):
        self.op_type = "gru"
        self.set_confs()
        self.set_data()
        self.gru()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['Input', 'H0', 'Weight', 'Bias'], ['Hidden'])


class TestGRUOpNoInitial(TestGRUOp):
    def set_data(self):
        super(TestGRUOpNoInitial, self).set_data()
        self.inputs.pop('H0')

    def test_check_grad(self):
        self.check_grad(['Input', 'Weight', 'Bias'], ['Hidden'])


class TestGRUOpReverse(TestGRUOp):
    def set_confs(self):
        self.is_reverse = True
        self.attrs = {
            'activation': 'identity',
            'gate_activation': 'sigmoid',
            'is_reverse': self.is_reverse
        }


if __name__ == "__main__":
    unittest.main()