pass_tester_helper.h 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <sstream>
#include <string>
20
#include <vector>
21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/op_proto_maker.h"

namespace paddle {
namespace framework {
namespace ir {

struct Layers {
 public:
  const ProgramDesc& main_program() { return program_; }

31 32 33 34
  VarDesc* data(std::string name, std::vector<int64_t> shape = {},
                bool is_persistable = false) {
    return lod_tensor(name, shape, is_persistable);
  }
35

36
  VarDesc* conv2d(VarDesc* input, VarDesc* filter, VarDesc* bias,
37
                  bool use_cudnn = false) {
38 39 40 41 42 43 44 45 46 47 48 49 50
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

51 52 53 54 55 56 57 58 59 60 61 62 63
  VarDesc* conv2d_transpose(VarDesc* input, VarDesc* filter, VarDesc* bias) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d_transpose");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  VarDesc* depthwise_conv2d(VarDesc* input, VarDesc* filter, VarDesc* bias,
                            bool use_cudnn) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("depthwise_conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  VarDesc* pool2d(VarDesc* x, bool use_cudnn) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("pool2d");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  VarDesc* relu(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("relu", x, out);
  }

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  VarDesc* fc(VarDesc* input, VarDesc* w, VarDesc* bias,
              int in_num_col_dims = 1, std::string activation_type = "") {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("fc");
    op->SetInput("Input", {input->Name()});
    op->SetInput("W", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("in_num_col_dims", in_num_col_dims);
    op->SetAttr("activation_type", activation_type);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  VarDesc* mul(VarDesc* x, VarDesc* y, VarDesc* out = nullptr,
               int x_num_col_dims = 1) {
    AttributeMap attrs;
    attrs["x_num_col_dims"] = 1;
    return binary_op("mul", x, y, out, &attrs);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  }

  VarDesc* elementwise_add(VarDesc* x, VarDesc* y, VarDesc* out = nullptr) {
    return binary_op("elementwise_add", x, y, out);
  }

  VarDesc* dropout(VarDesc* x, float dropout_prob,
                   std::string dropout_implementation) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("dropout");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("is_test", true);
    op->SetAttr("dropout_prob", dropout_prob);
    op->SetAttr("dropout_implementation", dropout_implementation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  VarDesc* concat(std::vector<VarDesc*> inputs, int axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("concat");
    std::vector<std::string> input_names(inputs.size());
    for (size_t i = 0; i < inputs.size(); ++i) {
      input_names[i] = inputs[i]->Name();
    }
    op->SetInput("X", input_names);
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axis", axis);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  std::vector<VarDesc*> layer_norm(VarDesc* x, VarDesc* scale = nullptr,
                                   VarDesc* bias = nullptr) {
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean = lod_tensor(unique_name());
    VarDesc* variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("layer_norm");
    op->SetInput("X", {x->Name()});
    if (scale) {
      op->SetInput("Scale", {scale->Name()});
    }
    if (bias) {
      op->SetInput("Bias", {bias->Name()});
    }
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("Mean", {mean->Name()});
    op->SetOutput("Variance", {variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1E-05));
    op->SetAttr("begin_norm_axis", static_cast<int>(1));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    std::vector<VarDesc*> outs = {y, mean, variance};
    return outs;
  }

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
  VarDesc* matmul(VarDesc* x, VarDesc* y, VarDesc* alpha = nullptr) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("matmul");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* transpose2(VarDesc* x, std::vector<int> axis) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("transpose2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* reshape2(VarDesc* x, std::vector<int> shape) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("reshape2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("shape", shape);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* softmax(VarDesc* x, int axis) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("softmax");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* scale(VarDesc* x, float scale, float bias, bool bias_after) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("scale");
    op->SetInput("X", {x->Name()});
    op->SetAttr("scale", scale);
    op->SetAttr("bias", bias);
    op->SetAttr("bias_after_scale", bias_after);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
  std::vector<VarDesc*> batch_norm(VarDesc* x, VarDesc* scale, VarDesc* bias,
                                   VarDesc* mean, VarDesc* variance) {
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean_out = lod_tensor(unique_name());
    VarDesc* variance_out = lod_tensor(unique_name());
    VarDesc* saved_mean = lod_tensor(unique_name());
    VarDesc* saved_variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("batch_norm");
    op->SetInput("X", {x->Name()});
    op->SetInput("Scale", {scale->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetInput("Mean", {mean->Name()});
    op->SetInput("Variance", {variance->Name()});
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("MeanOut", {mean_out->Name()});
    op->SetOutput("VarianceOut", {variance_out->Name()});
    op->SetOutput("SavedMean", {saved_mean->Name()});
    op->SetOutput("SavedVariance", {saved_variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1e-5));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    std::vector<VarDesc*> outs = {y, mean_out, variance_out, saved_mean,
                                  saved_variance};
    return outs;
  }

257
 private:
258 259
  VarDesc* lod_tensor(std::string name, std::vector<int64_t> shape = {},
                      bool is_persistable = false) {
260 261
    auto* var = program_.MutableBlock(0)->Var(name);
    var->SetType(proto::VarType::LOD_TENSOR);
262 263
    var->SetShape(shape);
    var->SetPersistable(is_persistable);
264 265 266
    return var;
  }

267 268 269 270 271 272 273 274 275 276 277 278 279
  VarDesc* unary_op(std::string type, VarDesc* x, VarDesc* out = nullptr) {
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

280
  VarDesc* binary_op(std::string type, VarDesc* x, VarDesc* y,
281 282
                     VarDesc* out = nullptr,
                     const AttributeMap* attrs = nullptr) {
283 284 285 286 287 288 289 290
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
291 292 293 294 295
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  std::string unique_name() { return "tmp_" + std::to_string(idx_++); }

 private:
  ProgramDesc program_;
  int idx_{0};
};

static std::string DebugString(OpDesc* op) {
  std::ostringstream os;
  os << "Op(" << op->Type() << "), inputs:{";
  bool is_first = true;
  for (auto& name : op->InputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Input(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }

  os << "}, outputs:{";
  is_first = true;
  for (auto& name : op->OutputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Output(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }
  os << "}";
  return os.str();
}

static std::string DebugString(Node* node) {
  std::ostringstream os;
  if (node->IsOp() && node->Op()) {
    OpDesc* op = node->Op();
    os << "Node(" << DebugString(op) << "), inputs:{";
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      os << in->Name();
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      os << out->Name();
      is_first = false;
    }
    os << "}.";
  } else if (node->IsVar() && node->Var()) {
    os << "Node(" << node->Name() << "), inputs:{";
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      if (in->IsOp() && in->Op()) {
        os << in->Op()->Type();
      }
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      if (out->IsOp() && out->Op()) {
        os << out->Op()->Type();
      }
      is_first = false;
    }
    os << "}";
  }
  return os.str();
}

static std::string DebugString(const std::unique_ptr<Graph>& graph) {
  std::ostringstream os;
  os << "Graph: {\n";
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && node->Op()) {
      os << "  ";
    } else if (node->IsVar() && node->Var()) {
      os << "    ";
    }
    os << DebugString(node) << "\n";
  }
  os << "}\n";
  return os.str();
}

static int GetNumOpNodes(const std::unique_ptr<Graph>& graph,
                         std::string op_type) {
  int num_nodes = 0;
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && node->Op() && node->Op()->Type() == op_type) {
      num_nodes++;
    }
  }
  return num_nodes;
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle