test_erfinv_op.py 3.4 KB
Newer Older
W
wuhuanzhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from scipy.special import erfinv
from op_test import OpTest
import paddle
import paddle.fluid.core as core

paddle.enable_static()
np.random.seed(0)


class TestErfinv(OpTest):
    def setUp(self):
        self.op_type = "erfinv"
H
hong 已提交
31
        self.python_api = paddle.erfinv
W
wuhuanzhou 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45
        self.init_dtype()
        self.shape = [11, 17]
        self.x = np.random.uniform(-1, 1, size=self.shape).astype(self.dtype)
        self.res_ref = erfinv(self.x).astype(self.dtype)
        self.grad_out = np.ones(self.shape, self.dtype)
        self.gradient = np.sqrt(np.pi) / 2 * np.exp(np.square(
            self.res_ref)) * self.grad_out
        self.inputs = {'X': self.x}
        self.outputs = {'Out': self.res_ref}

    def init_dtype(self):
        self.dtype = np.float64

    def test_check_output(self):
H
hong 已提交
46
        self.check_output(check_eager=True)
W
wuhuanzhou 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    def test_check_grad(self):
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.gradient],
            user_defined_grad_outputs=self.grad_out)


class TestErfinvFP32(TestErfinv):
    def init_dtype(self):
        self.dtype = np.float32


class TestErfinvAPI(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float32'

    def setUp(self):
        self.init_dtype()
        self.x = np.random.rand(5).astype(self.dtype)
        self.res_ref = erfinv(self.x)
        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                x = paddle.fluid.data('x', [1, 5], dtype=self.dtype)
                out = paddle.erfinv(x)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'x': self.x.reshape([1, 5])})
            for r in res:
                self.assertEqual(np.allclose(self.res_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            x = paddle.to_tensor(self.x)
            out = paddle.erfinv(x)
            self.assertEqual(np.allclose(self.res_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)

    def test_inplace_api(self):
        def run(place):
            paddle.disable_static(place)
            x = paddle.to_tensor(self.x)
            x.erfinv_()
            self.assertEqual(np.allclose(self.res_ref, x.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)


if __name__ == "__main__":
    unittest.main()