vgg16_fluid.py 9.8 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
typhoonzero 已提交
14 15 16 17 18 19 20 21 22
"""VGG16 benchmark in Fluid"""
from __future__ import print_function

import sys
import time
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
T
typhoonzero 已提交
23
import paddle.v2.fluid.profiler as profiler
T
typhoonzero 已提交
24 25 26 27
import argparse
import functools
import os

T
typhoonzero 已提交
28

T
typhoonzero 已提交
29 30 31 32 33 34 35 36
def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

T
typhoonzero 已提交
37

T
typhoonzero 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    '--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
    '--learning_rate',
    type=float,
    default=1e-3,
    help="Learning rate for training.")
parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
parser.add_argument(
    '--device',
    type=str,
    default='CPU',
    choices=['CPU', 'GPU'],
    help="The device type.")
parser.add_argument(
    '--data_format',
    type=str,
    default='NCHW',
    choices=['NCHW', 'NHWC'],
    help='The data order, now only support NCHW.')
parser.add_argument(
    '--data_set',
    type=str,
    default='cifar10',
    choices=['cifar10', 'flowers'],
    help='Optional dataset for benchmark.')
parser.add_argument(
    '--local',
    type=str2bool,
    default=True,
    help='Whether to run as local mode.')
args = parser.parse_args()


def vgg16_bn_drop(input):
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1 = fluid.layers.fc(input=drop, size=512, act=None)
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
    return fc2


def main():
    if args.data_set == "cifar10":
        classdim = 10
        if args.data_format == 'NCHW':
            data_shape = [3, 32, 32]
        else:
            data_shape = [32, 32, 3]
    else:
        classdim = 102
        if args.data_format == 'NCHW':
            data_shape = [3, 224, 224]
        else:
            data_shape = [224, 224, 3]

    # Input data
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    net = vgg16_bn_drop(images)
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    accuracy = fluid.evaluator.Accuracy(input=predict, label=label)

    # inference program
    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        test_target = accuracy.metrics + accuracy.states
        inference_program = fluid.io.get_inference_program(test_target)

    # Optimization
    optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
    optimize_ops, params_grads = optimizer.minimize(avg_cost)

    # Initialize executor
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    exe = fluid.Executor(place)

    # test
    def test(exe):
        accuracy.reset(exe)
        for batch_id, data in enumerate(test_reader()):
            img_data = np.array(map(lambda x: x[0].reshape(data_shape),
                                    data)).astype("float32")
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([-1, 1])

            exe.run(inference_program,
                    feed={"pixel": img_data,
                          "label": y_data})

        return accuracy.eval(exe)

    def train_loop(exe, trainer_prog):
        iters = 0
T
typhoonzero 已提交
158
        ts = time.time()
T
typhoonzero 已提交
159 160 161 162 163
        for pass_id in range(args.num_passes):
            # train
            start_time = time.time()
            num_samples = 0
            accuracy.reset(exe)
T
typhoonzero 已提交
164 165 166 167 168 169 170 171 172
            with profiler.profiler("CPU", 'total') as prof:
                for batch_id, data in enumerate(train_reader()):
                    ts = time.time()
                    img_data = np.array(
                        map(lambda x: x[0].reshape(data_shape), data)).astype(
                            "float32")
                    y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                    y_data = y_data.reshape([-1, 1])

T
typhoonzero 已提交
173 174 175 176 177
                    loss, acc = exe.run(
                        trainer_prog,
                        feed={"pixel": img_data,
                              "label": y_data},
                        fetch_list=[avg_cost] + accuracy.metrics)
T
typhoonzero 已提交
178 179 180 181 182 183
                    iters += 1
                    num_samples += len(data)
                    print(
                        "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, spent %f"
                        % (pass_id, iters, loss, acc, time.time() - ts)
                    )  # The accuracy is the accumulation of batches, but not the current batch.
T
typhoonzero 已提交
184 185 186 187 188 189 190

            pass_elapsed = time.time() - start_time
            pass_train_acc = accuracy.eval(exe)
            pass_test_acc = test(exe)
            print(
                "Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n"
                % (pass_id, num_samples / pass_elapsed, pass_train_acc,
T
typhoonzero 已提交
191
                   pass_test_acc))
T
typhoonzero 已提交
192 193 194 195 196 197 198 199

    if args.local:
        # Parameter initialization
        exe.run(fluid.default_startup_program())

        # data reader
        train_reader = paddle.batch(
            paddle.reader.shuffle(
T
typhoonzero 已提交
200 201
                paddle.dataset.cifar.train10() if args.data_set == 'cifar10'
                else paddle.dataset.flowers.train(),
T
typhoonzero 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
                buf_size=5120),
            batch_size=args.batch_size)
        test_reader = paddle.batch(
            paddle.dataset.cifar.test10()
            if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
            batch_size=args.batch_size)
        train_loop(exe, fluid.default_main_program())
    else:
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # all pserver endpoints
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, "6174"]))
        pserver_endpoints = ",".join(eplist)
        print("pserver endpoints: ", pserver_endpoints)
        trainers = int(os.getenv("TRAINERS"))  # total trainer count
T
typhoonzero 已提交
217
        print("trainers total: ", trainers)
T
typhoonzero 已提交
218 219 220 221 222
        current_endpoint = os.getenv(
            "POD_IP") + ":6174"  # current pserver endpoint
        training_role = os.getenv(
            "TRAINING_ROLE",
            "TRAINER")  # get the training role: trainer/pserver
T
typhoonzero 已提交
223 224
        t = fluid.DistributeTranspiler()
        t.transpile(
T
typhoonzero 已提交
225 226 227 228
            optimize_ops,
            params_grads,
            pservers=pserver_endpoints,
            trainers=trainers)
T
typhoonzero 已提交
229 230 231 232 233 234

        if training_role == "PSERVER":
            if not current_endpoint:
                print("need env SERVER_ENDPOINT")
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
235 236
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
T
typhoonzero 已提交
237 238 239 240 241 242 243 244 245 246 247
            print("starting server side startup")
            exe.run(pserver_startup)
            print("starting parameter server...")
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            # Parameter initialization
            exe.run(fluid.default_startup_program())

            # data reader
            train_reader = paddle.batch(
                paddle.reader.shuffle(
T
typhoonzero 已提交
248 249
                    paddle.dataset.cifar.train10() if args.data_set == 'cifar10'
                    else paddle.dataset.flowers.train(),
T
typhoonzero 已提交
250 251 252
                    buf_size=5120),
                batch_size=args.batch_size)
            test_reader = paddle.batch(
T
typhoonzero 已提交
253 254
                paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else
                paddle.dataset.flowers.test(),
T
typhoonzero 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
                batch_size=args.batch_size)

            trainer_prog = t.get_trainer_program()
            feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
            # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver
            exe.run(fluid.default_startup_program())
            train_loop(exe, trainer_prog)
        else:
            print("environment var TRAINER_ROLE should be TRAINER os PSERVER")


def print_arguments():
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == "__main__":
    print_arguments()
    main()