context_project.h 12.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/lod_tensor.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/math/im2col.h"
C
chengduoZH 已提交
22 23 24 25 26

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
27 28 29
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

C
chengduoZH 已提交
30
/*
C
chengduoZH 已提交
31
 * \brief Context projection concatenates features in adjacent time-steps in
C
chengduoZH 已提交
32 33 34
 * a sequence. The i-th row of the output is the concatenation of
 * context_length rows of the input. The context_length rows are the
 * consecutive rows from the i+shift_start row.
C
sss  
chengduoZH 已提交
35
 * ContextProjectGradFunctor is the inverse process of ContextProjectFunctor.
C
chengduoZH 已提交
36
 *
C
chengduoZH 已提交
37
 * \param in            Input data.
C
chengduoZH 已提交
38 39
 * \param Shape         The shape of Input data:
 *                        [mini-batch, input_hidden_size].
C
chengduoZH 已提交
40
 *
C
chengduoZH 已提交
41
 * \param padding_data  Padding data.
C
chengduoZH 已提交
42 43
 * \param Shape         The shape of Padding data:
 *                        [up_pad + down_pad, input_hidden_size].
C
chengduoZH 已提交
44
 *
C
chengduoZH 已提交
45
 * \param col           Col data.
C
chengduoZH 已提交
46 47
 * \param Shape         The shape of Col data:
 *                        [mini-batch, context_length * input_hidden_size].
C
chengduoZH 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *
 * For a mini-batch of 2 variable lengths sentences, containing 3, and 1
 * time-steps:
 *
 * Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
 * 4].
 * Besides, for the sake of simplicity, we assume M=1 and N=2.
 *
 * X = [[a1, a2;
 *       b1, b2;
 *       c1, c2]
 *      [d1, d2]]
 *
 * This is to say that input (X) has 4 words and the dimension of each word
 * representation is 2.
 *
 * - Case1:
C
chengduoZH 已提交
65 66 67
 *   If context_start is -1 and padding_trainable is false, we use zero to pad
 *   instead of learned weight to pad,
 *   and the context_length is 3, the output (Out) is:
C
chengduoZH 已提交
68
 *
C
chengduoZH 已提交
69 70 71 72
 *   Out =[[0,  0,  a1, a2, b1, b2;
 *          a1, a2, b1, b2, c1, c2;
 *          b1, b2, c1, c2, 0,  0 ]
 *          [0,  0, d1, d2, 0,  0 ]]
C
chengduoZH 已提交
73 74
 *
 * - Case2:
C
chengduoZH 已提交
75 76 77
 *   If context_start is -1 and padding_trainable is true, we use learned weight
 *   to pad,
 *   and the context_length is 3, the output (Out) is:
C
chengduoZH 已提交
78
 *
C
chengduoZH 已提交
79 80 81 82
 *   Out = [[w1, w2, a1, a2, b1, b2;
 *           a1, a2, b1, b2, c1, c2;
 *           b1, b2, c1, c2, w3, w4]
 *          [w1, w2, d1, d2, w3, w4]]
C
chengduoZH 已提交
83 84 85
 *
 */

Q
QI JUN 已提交
86
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
87
class ContextProjectFunctor {
C
chengduoZH 已提交
88
 public:
Q
QI JUN 已提交
89
  void operator()(const DeviceContext& context, const LoDTensor& in,
90 91 92 93
                  const Tensor& padding_data, bool padding_trainable,
                  const int context_start, const int context_length,
                  const int context_stride, const int up_pad,
                  const int down_pad, Tensor* col) {
C
chengduoZH 已提交
94
    auto lod_level_0 = in.lod()[0];
C
chengduoZH 已提交
95

Q
QI JUN 已提交
96
    math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, float> im2col_ocf;
C
sss  
chengduoZH 已提交
97

C
chengduoZH 已提交
98 99 100
    std::vector<int> dilation({1, 1});
    std::vector<int> padding({up_pad, 0, down_pad, 0});
    std::vector<int> stride({context_stride, 1});
C
chengduoZH 已提交
101

C
sss  
chengduoZH 已提交
102 103 104 105 106 107 108 109 110 111
    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
    sequence_width = in.dims()[1];

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_level_0[i]) + context_start
                            : static_cast<int>(lod_level_0[i]);
      input_row_end = static_cast<int>(lod_level_0[i + 1]);

112 113
      Tensor out_t = col->Slice(static_cast<int>(lod_level_0[i]),
                                static_cast<int>(lod_level_0[i + 1]));
C
sss  
chengduoZH 已提交
114 115 116 117

      sequence_height = static_cast<int>(out_t.dims()[0]);

      if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
118
        Tensor in_t = in.Slice(input_row_begin, input_row_end);
C
sss  
chengduoZH 已提交
119 120 121 122 123 124 125 126 127 128 129

        std::vector<int64_t> output_shape(
            {sequence_height, 1, 1, context_length,
             sequence_width});  // output_height, output_width,
        // input_channels, filter_height, filter_width
        out_t.Resize(framework::make_ddim(output_shape));

        std::vector<int64_t> input_shape(
            {1, input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(framework::make_ddim(input_shape));
C
chengduoZH 已提交
130
        im2col_ocf(context, in_t, dilation, stride, padding, &out_t);
C
sss  
chengduoZH 已提交
131 132 133 134 135
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
    if (padding_trainable) {
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
136 137
        Tensor out_t = col->Slice(static_cast<int>(lod_level_0[i]),
                                  static_cast<int>(lod_level_0[i + 1]));
C
sss  
chengduoZH 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150

        sequence_height = static_cast<int>(out_t.dims()[0]);

        // add up trainable data
        out_t.Resize({sequence_height * context_length, sequence_width});

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
151 152 153
            Tensor out_t_sub = out_t.Slice(k * context_length,
                                           k * context_length + padding_size);
            Tensor w_sub = padding_data.Slice(k, k + padding_size);
Y
Yi Wang 已提交
154 155
            framework::TensorCopy(w_sub, context.GetPlace(), context,
                                  &out_t_sub);
C
sss  
chengduoZH 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
          }
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
            }
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
C
chengduoZH 已提交
179 180

            Tensor out_t_sub = out_t.Slice(
C
sss  
chengduoZH 已提交
181 182
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
183
            Tensor w_sub = padding_data.Slice(
C
sss  
chengduoZH 已提交
184
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
Y
Yi Wang 已提交
185 186
            framework::TensorCopy(w_sub, context.GetPlace(), context,
                                  &out_t_sub);
C
sss  
chengduoZH 已提交
187 188 189 190 191 192 193 194
          }
        }
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
  }
};

Q
QI JUN 已提交
195
template <typename DeviceContext, typename T>
C
sss  
chengduoZH 已提交
196 197
class ContextProjectGradFunctor {
 public:
Q
QI JUN 已提交
198
  void operator()(const DeviceContext& context, const LoDTensor& in,
199 200 201 202
                  bool padding_trainable, const int context_start,
                  const int context_length, const int context_stride,
                  const int up_pad, const int down_pad, bool pad_grad,
                  bool input_grad, Tensor* padding_data, Tensor* col) {
C
sss  
chengduoZH 已提交
203 204
    auto lod_level_0 = in.lod()[0];

Q
QI JUN 已提交
205
    math::Col2ImFunctor<math::ColFormat::kOCF, DeviceContext, float> col2im_ocf;
C
chengduoZH 已提交
206

C
chengduoZH 已提交
207 208 209
    std::vector<int> dilation({1, 1});
    std::vector<int> padding({up_pad, 0, down_pad, 0});
    std::vector<int> stride({context_stride, 1});
C
chengduoZH 已提交
210

C
chengduoZH 已提交
211 212
    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
C
chengduoZH 已提交
213
    sequence_width = in.dims()[1];
Y
Yu Yang 已提交
214
    auto blas = math::GetBlas<DeviceContext, T>(context);
C
chengduoZH 已提交
215

C
sss  
chengduoZH 已提交
216
    if (input_grad) {
C
chengduoZH 已提交
217 218 219 220 221 222
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
        input_row_begin = (context_start > 0)
                              ? static_cast<int>(lod_level_0[i]) + context_start
                              : static_cast<int>(lod_level_0[i]);
        input_row_end = static_cast<int>(lod_level_0[i + 1]);

223 224
        Tensor out_t = col->Slice(static_cast<int>(lod_level_0[i]),
                                  static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
225 226 227 228

        sequence_height = static_cast<int>(out_t.dims()[0]);

        if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
229
          Tensor in_t = in.Slice(input_row_begin, input_row_end);
C
chengduoZH 已提交
230 231 232 233 234 235 236 237 238 239 240 241

          std::vector<int64_t> output_shape(
              {sequence_height, 1, 1, context_length,
               sequence_width});  // output_height, output_width,
          // input_channels, filter_height, filter_width
          out_t.Resize(framework::make_ddim(output_shape));

          std::vector<int64_t> input_shape(
              {1, input_row_end - input_row_begin,
               sequence_width});  // input_channels, input_height, input_width
          in_t.Resize(framework::make_ddim(input_shape));

C
chengduoZH 已提交
242
          col2im_ocf(context, out_t, dilation, stride, padding, &in_t);
C
chengduoZH 已提交
243
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
244
        }
C
chengduoZH 已提交
245
      }
C
chengduoZH 已提交
246
    }
C
sss  
chengduoZH 已提交
247
    if (pad_grad) {
C
chengduoZH 已提交
248
      if (padding_trainable) {
C
chengduoZH 已提交
249
        for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
250 251
          Tensor out_t = col->Slice(static_cast<int>(lod_level_0[i]),
                                    static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
252 253

          sequence_height = static_cast<int>(out_t.dims()[0]);
C
chengduoZH 已提交
254
          out_t.Resize({sequence_height * context_length, sequence_width});
C
chengduoZH 已提交
255

C
sss  
chengduoZH 已提交
256
          if (up_pad > 0) {
C
chengduoZH 已提交
257 258 259 260 261 262
            int padding_rows = std::min(
                up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

            for (int k = 0; k < padding_rows; ++k) {
              int padding_size =
                  k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
263 264
              Tensor out_t_sub = out_t.Slice(k * context_length,
                                             k * context_length + padding_size);
265
              Tensor w_sub = padding_data->Slice(k, k + padding_size);
Y
Yu Yang 已提交
266 267
              blas.AXPY(w_sub.numel(), static_cast<T>(1), out_t_sub.data<T>(),
                        w_sub.data<T>());
C
chengduoZH 已提交
268
            }
C
chengduoZH 已提交
269
          }
C
sss  
chengduoZH 已提交
270
          if (down_pad > 0) {
C
chengduoZH 已提交
271 272 273 274 275 276 277 278 279
            int down_pad_begin_row =
                std::max(
                    0, (sequence_height - context_start - context_length) + 1) +
                1;
            int padding_begin = std::max(0, context_start - sequence_height);
            int padding_size =
                sequence_height - context_start >= context_length
                    ? 1
                    : context_length - (sequence_height - context_start);
C
chengduoZH 已提交
280
            if (context_start >= sequence_height) padding_size = context_length;
C
chengduoZH 已提交
281 282 283 284 285 286 287 288 289 290 291
            int padding_idx = padding_begin;
            for (int t = 0; t + down_pad_begin_row <= sequence_height;
                 ++t, ++padding_size) {
              if (context_start >= sequence_height)
                padding_size = context_length;
              if (padding_size > context_length) {
                padding_size = context_length;
                padding_idx++;
              }
              if (padding_begin > 0 || sequence_height == context_start)
                padding_idx = padding_begin + t;
C
chengduoZH 已提交
292 293

              Tensor out_t_sub = out_t.Slice(
C
chengduoZH 已提交
294 295
                  (down_pad_begin_row + t) * context_length - padding_size,
                  (down_pad_begin_row + t) * context_length);
296
              Tensor w_sub = padding_data->Slice(
C
chengduoZH 已提交
297
                  up_pad + padding_idx, up_pad + padding_idx + padding_size);
Y
Yu Yang 已提交
298 299
              blas.AXPY(w_sub.numel(), static_cast<T>(1), out_t_sub.data<T>(),
                        w_sub.data<T>());
C
chengduoZH 已提交
300 301
            }
          }
C
chengduoZH 已提交
302
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
303 304 305 306 307 308 309 310 311
        }
      }
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle