test_elementwise_sub_op.py 15.6 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

G
gongweibao 已提交
15 16
import unittest
import numpy as np
C
chentianyu03 已提交
17
import paddle
18
import paddle.fluid as fluid
19
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
20
from paddle.fluid.framework import _test_eager_guard
G
gongweibao 已提交
21 22 23 24 25 26


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
27
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
28
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
G
gongweibao 已提交
29 30 31 32 33 34 35
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
36
        self.check_grad(['X', 'Y'], 'Out')
G
gongweibao 已提交
37 38

    def test_check_grad_ingore_x(self):
39 40 41
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")
        )
G
gongweibao 已提交
42 43

    def test_check_grad_ingore_y(self):
44 45 46
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')
        )
G
gongweibao 已提交
47 48


49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
class TestElementwiseSubOp_ZeroDim1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, []).astype("float64"),
            'Y': np.random.uniform(0.1, 1, []).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_ZeroDim2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, []).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_ZeroDim3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, []).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


79 80 81 82 83 84 85 86 87 88
class TestBF16ElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        out = x - y

        self.inputs = {
            'X': convert_float_to_uint16(x),
89
            'Y': convert_float_to_uint16(y),
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


106
@skip_check_grad_ci(
107 108
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
109 110 111 112
class TestElementwiseSubOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
113
            'X': np.random.rand(10, 3, 4).astype(np.float64),
114
            'Y': np.random.rand(1).astype(np.float64),
115 116 117 118
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


G
gongweibao 已提交
119 120 121 122
class TestElementwiseSubOp_Vector(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
123 124
            'X': np.random.random((100,)).astype("float64"),
            'Y': np.random.random((100,)).astype("float64"),
G
gongweibao 已提交
125 126 127 128 129 130 131 132
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_broadcast_0(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
133
            'X': np.random.rand(100, 3, 2).astype(np.float64),
134
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
135 136 137 138
        }

        self.attrs = {'axis': 0}
        self.outputs = {
139
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1)
G
gongweibao 已提交
140 141 142 143 144 145 146
        }


class TestElementwiseSubOp_broadcast_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
147
            'X': np.random.rand(2, 100, 3).astype(np.float64),
148
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
149 150 151 152
        }

        self.attrs = {'axis': 1}
        self.outputs = {
153
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1)
G
gongweibao 已提交
154 155 156 157 158 159 160
        }


class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
161
            'X': np.random.rand(2, 3, 100).astype(np.float64),
162
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
163 164 165
        }

        self.outputs = {
166
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100)
G
gongweibao 已提交
167 168 169 170 171 172 173
        }


class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
174
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
175
            'Y': np.random.rand(10, 12).astype(np.float64),
G
gongweibao 已提交
176 177 178 179
        }

        self.attrs = {'axis': 1}
        self.outputs = {
180
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1)
G
gongweibao 已提交
181 182 183
        }


184 185 186 187
class TestElementwiseSubOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
188
            'X': np.random.rand(2, 5, 3, 12).astype(np.float64),
189
            'Y': np.random.rand(2, 5, 1, 12).astype(np.float64),
190 191 192 193
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


194 195 196 197
class TestElementwiseSubOp_commonuse_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
198
            'X': np.random.rand(2, 3, 100).astype(np.float64),
199
            'Y': np.random.rand(1, 1, 100).astype(np.float64),
200 201 202 203 204 205 206 207
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_commonuse_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
208
            'X': np.random.rand(10, 3, 1, 4).astype(np.float64),
209
            'Y': np.random.rand(10, 1, 12, 1).astype(np.float64),
210 211 212 213 214 215 216 217
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
218
            'X': np.random.rand(10, 12).astype(np.float64),
219
            'Y': np.random.rand(2, 3, 10, 12).astype(np.float64),
220 221 222 223 224
        }

        self.attrs = {'axis': 2}

        self.outputs = {
225
            'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y']
226 227 228
        }


C
chentianyu03 已提交
229 230 231 232 233 234 235 236 237 238
class TestComplexElementwiseSubOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
239
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
C
chentianyu03 已提交
240 241 242 243 244 245 246 247 248
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
249 250
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
251
        self.y = np.random.random(self.shape).astype(
252 253
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
254 255 256
        self.out = self.x - self.y

    def init_grad_input_output(self):
257 258 259
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
C
chentianyu03 已提交
260 261 262 263 264 265 266
        self.grad_x = self.grad_out
        self.grad_y = -self.grad_out

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
267 268 269 270 271 272
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
273 274

    def test_check_grad_ingore_x(self):
275 276 277 278 279 280 281
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
282 283

    def test_check_grad_ingore_y(self):
284 285 286 287 288 289 290
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
291 292 293 294 295 296


class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp):
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
297 298
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
299 300 301
        self.out = self.x - self.y

    def init_grad_input_output(self):
302 303 304
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
C
chentianyu03 已提交
305 306 307 308
        self.grad_x = np.real(self.grad_out)
        self.grad_y = -self.grad_out


309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
class TestSubtractApi(unittest.TestCase):
    def _executed_api(self, x, y, name=None):
        return paddle.subtract(x, y, name)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

            y_1 = self._executed_api(x, y, name='subtract_res')
            self.assertEqual(('subtract_res' in y_1.name), True)

    def test_declarative(self):
        with fluid.program_guard(fluid.Program()):

            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
327
                    "y": np.array([1, 5, 2]).astype('float32'),
328 329 330 331 332 333 334 335
                }

            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = self._executed_api(x, y)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(), fetch_list=[z.name])
336
            z_expected = np.array([1.0, -2.0, 2.0])
337 338 339 340 341 342 343 344 345 346
            self.assertEqual((z_value == z_expected).all(), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = self._executed_api(x, y)
            np_z = z.numpy()
347
            z_expected = np.array([1.0, -2.0, 2.0])
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
            self.assertEqual((np_z == z_expected).all(), True)


class TestSubtractInplaceApi(TestSubtractApi):
    def _executed_api(self, x, y, name=None):
        return x.subtract_(y, name)


class TestSubtractInplaceBroadcastSuccess(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.subtract_(y)
        numpy_result = self.x_numpy - self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestSubtractInplaceBroadcastSuccess2(TestSubtractInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestSubtractInplaceBroadcastSuccess3(TestSubtractInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


class TestSubtractInplaceBroadcastError(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(3, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')

    def test_broadcast_errors(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)

        def broadcast_shape_error():
            x.subtract_(y)

        self.assertRaises(ValueError, broadcast_shape_error)
        paddle.enable_static()


class TestSubtractInplaceBroadcastError2(TestSubtractInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


class TestSubtractInplaceBroadcastError3(TestSubtractInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


414 415 416 417 418 419 420 421 422 423 424 425 426
class TestFloatElementwiseSubop(unittest.TestCase):
    def func_dygraph_sub(self):
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float64)
        np_b = np.random.random((2, 3, 4)).astype(np.float64)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: tensor - tensor
        expect_out = np_a - np_b
        actual_out = tensor_a - tensor_b
427 428 429
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
430 431 432 433

        # normal case: tensor - scalar
        expect_out = np_a - 1
        actual_out = tensor_a - 1
434 435 436
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
437 438 439 440

        # normal case: scalar - tenor
        expect_out = 1 - np_a
        actual_out = 1 - tensor_a
441 442 443
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
444 445 446 447 448 449 450 451 452

        paddle.enable_static()

    def test_dygraph_sub(self):
        with _test_eager_guard():
            self.func_dygraph_sub()
        self.func_dygraph_sub()


453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
class TestFloatElementwiseSubop1(unittest.TestCase):
    def func_dygraph_sub(self):
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float32)
        np_b = np.random.random((2, 3, 4)).astype(np.float32)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: nparray - tenor
        expect_out = np_a - np_b
        actual_out = np_a - tensor_b
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )

        # normal case: tenor - nparray
        actual_out = tensor_a - np_b
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )

        paddle.enable_static()

    def test_dygraph_sub(self):
        with _test_eager_guard():
            self.func_dygraph_sub()


G
gongweibao 已提交
483
if __name__ == '__main__':
C
chentianyu03 已提交
484
    paddle.enable_static()
G
gongweibao 已提交
485
    unittest.main()