input.py 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import warnings
17
from ...static import Variable
18 19
from ...fluid.layer_helper import LayerHelper
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
W
wanghuancoder 已提交
20
from paddle import _C_ops
Z
zhiboniu 已提交
21
from paddle import in_dynamic_mode
J
Jiabin Yang 已提交
22
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode
23 24
__all__ = []

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

def one_hot(x, num_classes, name=None):
    """

    The operator converts each id in the input 'x' to an one-hot vector with a
    num_classes length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor is generated by appending num_classes dimension
    behind the last dimension of the 'x' shape.

    .. code-block:: text

        Example 1:

        input:
            x.shape = [4]
            x.data = [1, 1, 3, 0]
            num_classes = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2:

        input:
            x.shape = [4]
            x.data = [1, 1, 5, 0]
            num_classes = 4

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than num_classes,
            so it throws an exception.


    Args:
        x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` ,
            which contains at least one dimension. The data type is int32 or int64.
        num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x'
            is word id, num_classes is generally the dictionary size.

    Returns:
        Tensor: The one-hot representations of 'x'. A Tensor with type float32.

    Examples:
        .. code-block:: python

76
            import paddle
77
            # Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
Y
yukavio 已提交
78
            label = paddle.to_tensor([1, 1, 3, 0], dtype='int64')
79
            # label.shape = [4]
Y
yukavio 已提交
80
            one_hot_label = paddle.nn.functional.one_hot(label, num_classes=4)
81
            # one_hot_label.shape = [4, 4]
Y
yukavio 已提交
82 83 84 85
            # one_hot_label = [[0., 1., 0., 0.],
            #                  [0., 1., 0., 0.],
            #                  [0., 0., 0., 1.],
            #                  [1., 0., 0., 0.]]
T
tangwei12 已提交
86

87 88
    """

J
Jiabin Yang 已提交
89 90
    if in_dygraph_mode():
        return _C_ops.final_state_one_hot(x, num_classes)
91
    else:
J
Jiabin Yang 已提交
92 93 94
        if _in_legacy_dygraph():
            return _C_ops.one_hot_v2(x, 'depth', num_classes,
                                     'allow_out_of_range', False)
95
        else:
J
Jiabin Yang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            check_variable_and_dtype(x, 'input', ['int32', 'int64'],
                                     'one_hot_v2')
            helper = LayerHelper("one_hot_v2", **locals())

            one_hot_out = helper.create_variable_for_type_inference(
                dtype='float32')
            if not isinstance(num_classes, Variable):
                # user attribute
                inputs = {'X': x}
                attrs = {'depth': num_classes, 'allow_out_of_range': False}
            else:
                num_classes.stop_gradient = True
                inputs = {'X': x, 'depth_tensor': num_classes}
                attrs = {'allow_out_of_range': False}
            helper.append_op(
                type="one_hot_v2",
                inputs=inputs,
                attrs=attrs,
                outputs={'Out': one_hot_out},
                stop_gradient=True)
            return one_hot_out
T
tangwei12 已提交
117 118 119


def embedding(x, weight, padding_idx=None, sparse=False, name=None):
120
    r"""
T
tangwei12 已提交
121
    The operator is used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
122 123 124

    The shape of output Tensor is generated by appending the last dimension of the input Tensor shape
    with embedding size.
T
tangwei12 已提交
125 126

    **Note:** The id in :attr:`x` must satisfy :math:`0 =< id < weight.shape[0]` ,
T
tangwei12 已提交
127 128 129 130 131
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:
T
tangwei12 已提交
132
            x is a Tensor.
T
tangwei12 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
                padding_idx = -1
                x.data = [[1, 3], [2, 4], [4, 127]]
                x.shape = [3, 2]
                weight.shape = [128, 16]
            output is a Tensor:
                out.shape = [3, 2, 16]
                out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                            [0.345421456, 0.524563927, ..., 0.144534654]],
                            [[0.345249859, 0.124939536, ..., 0.194353745],
                            [0.945345345, 0.435394634, ..., 0.435345365]],
                            [[0.945345345, 0.435394634, ..., 0.435345365],
                            [0.0,         0.0,         ..., 0.0        ]]]  # padding data

            The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
T
tangwei12 已提交
147
            It will pad all-zero data when id is 127.
T
tangwei12 已提交
148 149 150 151 152 153 154 155 156

    Args:
        x(Tensor): A Tensor with type int32/int64, which contains the id information. The value of the input id should
            satisfy :math:`0<= id < weight.shape[0]` .
        weight (Tensor): The weight. A Tensor with shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizers does not support sparse update,
T
tangwei12 已提交
157
            such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`.
T
tangwei12 已提交
158 159
            In these cases, sparse must be False. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-weight.shape[0], weight.shape[0]).
T
tangwei12 已提交
160
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
T
tangwei12 已提交
161
            to :math:`weight.shape[0] + padding\_idx` . It will output all-zero padding data whenever lookup
T
tangwei12 已提交
162 163 164 165 166 167 168
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.

    Returns:
T
tangwei12 已提交
169
        Tensor: Embedding Tensor  mapped by x. The data type is the same as :attr:`weight`.
T
tangwei12 已提交
170 171 172 173 174

    Examples:

        .. code-block:: python

T
tangwei12 已提交
175
            import numpy as np
T
tangwei12 已提交
176 177 178
            import paddle
            import paddle.nn as nn

T
tangwei12 已提交
179 180
            x0 = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
            w0 = np.full(shape=(10, 3), fill_value=2).astype(np.float32)
T
tangwei12 已提交
181

T
tangwei12 已提交
182 183 184
            # x.data = [[3], [4], [5]]
            # x.shape = [3, 1]
            x = paddle.to_tensor(x0, stop_gradient=False)
T
tangwei12 已提交
185

T
tangwei12 已提交
186 187 188
            # w.data = [[2. 2. 2.] ... [2. 2. 2.]]
            # w.shape = [10, 3]
            w = paddle.to_tensor(w0, stop_gradient=False)
T
tangwei12 已提交
189

T
tangwei12 已提交
190 191 192 193
            # emb.data = [[[2., 2., 2.]], [[2., 2., 2.]], [[2., 2., 2.]]]
            # emb.shape = [3, 1, 3]
            emb = nn.functional.embedding(
                    x=x, weight=w, sparse=True, name="embedding")
T
tangwei12 已提交
194 195

    """
196 197 198 199 200 201 202
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        weight.shape[0] + padding_idx)

    if padding_idx >= weight.shape[0] or padding_idx < -weight.shape[0]:
        raise ValueError("padding_idx must be within [-{}, {})".format(
            weight.shape[0], weight.shape[0]))

Z
zhiboniu 已提交
203
    if in_dynamic_mode():
W
wanghuancoder 已提交
204
        return _C_ops.lookup_table_v2(
T
tangwei12 已提交
205 206 207 208
            weight, x, 'is_sparse', sparse, 'is_distributed', False,
            'remote_prefetch', False, 'padding_idx', padding_idx)
    else:
        helper = LayerHelper('embedding', **locals())
209
        dtype = helper.input_dtype(input_param_name='weight')
T
tangwei12 已提交
210

211 212 213
        check_variable_and_dtype(x, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'embedding')
T
tangwei12 已提交
214 215 216 217 218

        is_distributed = False
        remote_prefetch = sparse and (not is_distributed)

        tmp = helper.create_variable_for_type_inference(dtype)
T
tangwei12 已提交
219

T
tangwei12 已提交
220 221 222 223 224 225 226 227 228 229 230 231
        helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': x,
                    'W': weight},
            outputs={'Out': tmp},
            attrs={
                'is_sparse': sparse,
                'is_distributed': is_distributed,
                'remote_prefetch': remote_prefetch,
                'padding_idx': padding_idx
            })
        return tmp