quantize_linear_op.h 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/fake_dequantize_op.h"
#include "paddle/fluid/operators/fake_quantize_op.h"
#include "paddle/fluid/platform/transform.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/hostdevice.h"
#include "paddle/phi/kernels/cast_kernel.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
struct ChannelDequantizeFunctorV2 {
  void operator()(const DeviceContext& dev_ctx, const framework::Tensor* in,
                  const framework::Tensor** scales, const int scale_num,
                  T max_range, const int quant_axis, framework::Tensor* out);
};

template <typename DeviceContext, typename T>
class QuantizeLinearKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* in_scale = context.Input<framework::Tensor>("Scale");

    auto* out = context.Output<framework::Tensor>("Y");
    out->mutable_data<T>(context.GetPlace());
    int bit_length = context.Attr<int>("bit_length");
    int bin_cnt = std::pow(2, bit_length - 1) - 1;
    int quant_axis = context.Attr<int>("quant_axis");
    bool is_test = context.Attr<bool>("is_test");
    auto& dev_ctx = context.template device_context<DeviceContext>();

    if (quant_axis < 0) {
      if (!is_test) {
        auto* out_scale = context.Output<framework::Tensor>("OutScale");
        T* out_s = out_scale->mutable_data<T>(context.GetPlace());
        FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(),
                                              in->numel(), out_s);
        ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
                                                    bin_cnt, out);
      } else {
        ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *in_scale,
                                                    bin_cnt, out);
      }
    } else {
      if (!is_test) {
        auto* out_scale = context.Output<framework::Tensor>("OutScale");
        T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
        FindChannelAbsMaxFunctor<DeviceContext, T>()(dev_ctx, *in, quant_axis,
                                                     out_scale_data);
        ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
            dev_ctx, *in, *out_scale, bin_cnt, quant_axis, out);
      } else {
        ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
            dev_ctx, *in, *in_scale, bin_cnt, quant_axis, out);
      }
    }
  }
};

template <typename DeviceContext, typename T, typename D>
class DeQuantizeLinearKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    auto* in = context.Input<framework::Tensor>("X");

    auto in_tmp = phi::Cast<T>(
        static_cast<const typename paddle::framework::ConvertToPhiContext<
            DeviceContext>::TYPE&>(dev_ctx),
        *in, experimental::CppTypeToDataType<D>::Type());

    auto* scale = context.Input<framework::Tensor>("Scale");
    auto* out = context.Output<framework::Tensor>("Y");
    int bit_length = context.Attr<int>("bit_length");
    auto quant_axis = context.Attr<int>("quant_axis");
    out->mutable_data<D>(dev_ctx.GetPlace());

    if (quant_axis < 0) {
      float max_range = (std::pow(2, bit_length - 1) - 1);
      DequantizeFunctor<DeviceContext, D>()(dev_ctx, &in_tmp, scale,
                                            static_cast<D>(max_range), out);
    } else {
      PADDLE_ENFORCE_EQ(
          scale->numel(), in_tmp.dims()[quant_axis],
          platform::errors::PreconditionNotMet(
              "The number of first scale values must be the same with "
              "quant_axis dimension value of Input(X) when the `scale` has "
              "only one element, but %ld != %ld here.",
              scale->numel(), in_tmp.dims()[quant_axis]));
      int max_range = (std::pow(2, bit_length - 1) - 1);

      ChannelDequantizeFunctorV2<DeviceContext, D>()(
          dev_ctx, &in_tmp, scale, static_cast<D>(max_range), quant_axis, out);
    }
  }
};

}  // namespace operators
}  // namespace paddle