rowwise_add_op.h 1.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <glog/logging.h>
#include <paddle/framework/operator.h>

namespace paddle {
namespace operators {

Q
qijun 已提交
22
template <typename Place, typename T>
23 24
class RowWiseAddKernel : public framework::OpKernel {
public:
Q
qijun 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
  void Compute(const framework::KernelContext& context) const override {
    auto in0 = context.Input(0)->Get<framework::Tensor>();
    auto in1 = context.Input(1)->Get<framework::Tensor>();
    auto* out = context.Output(0)->GetMutable<framework::Tensor>();

    auto input = in0.matrix<T>();
    auto bias = in1.vec<T>();
    auto output = out->matrix<T>();

    const int bias_size = bias.dimension(0);
    const int rest_size = input.size() / bias_size;
    Eigen::DSizes<int, 1> one_d(input.size());
    Eigen::DSizes<int, 1> bcast(rest_size);
    output.reshape(one_d).device(*(context.GetEigenDevice<Place>())) =
        input.reshape(one_d) + bias.broadcast(bcast).reshape(one_d);
40 41 42 43 44
  }
};

}  // namespace operators
}  // namespace paddle