jit_kernel_blas.cc 15.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
17
#include "paddle/fluid/operators/math/jit_code.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
19 20
#include "paddle/fluid/platform/enforce.h"

T
tensor-tang 已提交
21 22 23 24 25 26 27 28 29 30 31 32
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
33
namespace jit = platform::jit;
T
tensor-tang 已提交
34

T
tensor-tang 已提交
35 36 37 38
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
T
tensor-tang 已提交
39
  }
T
tensor-tang 已提交
40
}
T
tensor-tang 已提交
41

T
tensor-tang 已提交
42 43 44 45 46 47 48
template <typename T>
void VAddRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

T
tensor-tang 已提交
49 50 51 52 53 54 55 56
template <typename T>
void VAddReluRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
    z[i] = z[i] > 0 ? z[i] : 0;
  }
}

T
tensor-tang 已提交
57 58 59 60 61 62 63 64
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);

template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsMul(n, x, y, z);
}
T
tensor-tang 已提交
65

T
tensor-tang 已提交
66 67 68 69
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdMul(n, x, y, z);
}
T
tensor-tang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82

template <typename T>
void VAddMKL(const T* x, const T* y, T* z, int n);

template <>
void VAddMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsAdd(n, x, y, z);
}

template <>
void VAddMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdAdd(n, x, y, z);
}
T
tensor-tang 已提交
83 84
#endif

T
tensor-tang 已提交
85 86 87 88 89 90 91
#define DECLARE_STATIC_FUNC                                 \
  static inline std::string name(int d) {                   \
    PADDLE_THROW("DType should be either float or double"); \
  }                                                         \
  static inline bool useJIT(int d) { return false; }        \
  static inline bool useMKL(int d) { return false; }

92
/* VMUL JitKernel */
T
tensor-tang 已提交
93 94 95
template <typename T>
class VMulKernelImpl : public VMulKernel<T> {
 public:
T
tensor-tang 已提交
96
  DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
97 98
  explicit VMulKernelImpl(int d) : VMulKernel<T>() {
    if (useJIT(d)) {
T
tensor-tang 已提交
99 100 101
      // roughly estimate the size of code
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
      jitcode_.reset(new gen::VMulJitCode(d, sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
102 103 104 105 106 107 108 109 110
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VMulMKL<T>;
      return;
    }
T
tensor-tang 已提交
111
#endif
T
tensor-tang 已提交
112 113 114 115
    this->Compute = VMulRefer<T>;
  }

 private:
116
  std::unique_ptr<gen::VMulJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
117 118 119 120
};

template <>
bool VMulKernelImpl<float>::useJIT(int d) {
121
  return gen::VMulJitCode::init(d);
T
tensor-tang 已提交
122 123 124 125 126 127 128 129 130 131 132 133
}

template <>
bool VMulKernelImpl<float>::useMKL(int d) {
  return jit::MayIUse(jit::avx512f) && d > 512;
}

template <>
bool VMulKernelImpl<double>::useMKL(int d) {
  return true;
}

T
tensor-tang 已提交
134 135
/* VAdd JitKernel */
template <typename T>
T
tensor-tang 已提交
136 137
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
138 139 140 141
  DECLARE_STATIC_FUNC;
  explicit VAddKernelImpl(int d) : VAddKernel<T>() {
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
142
      jitcode_.reset(new gen::VAddJitCode(d, false, sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
143 144 145
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
146
    }
T
tensor-tang 已提交
147 148 149 150 151 152 153
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VAddMKL<T>;
      return;
    }
#endif
    this->Compute = VAddRefer<T>;
T
tensor-tang 已提交
154
  }
T
tensor-tang 已提交
155 156 157

 private:
  std::unique_ptr<gen::VAddJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
158
};
T
tensor-tang 已提交
159

T
tensor-tang 已提交
160 161 162 163
template <>
bool VAddKernelImpl<float>::useJIT(int d) {
  return gen::VAddJitCode::init(d);
}
T
tensor-tang 已提交
164

T
tensor-tang 已提交
165 166 167 168
template <>
bool VAddKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
169

T
tensor-tang 已提交
170 171 172 173
template <>
bool VAddKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
174

T
tensor-tang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
  DECLARE_STATIC_FUNC;
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() {
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
      jitcode_.reset(new gen::VAddJitCode(d, true, sz > 4096 ? sz : 4096));
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
    this->Compute = VAddReluRefer<T>;
  }

 private:
  std::unique_ptr<gen::VAddJitCode> jitcode_{nullptr};
};

template <>
bool VAddReluKernelImpl<float>::useJIT(int d) {
  return gen::VAddJitCode::init(d);
}

T
tensor-tang 已提交
200
#undef DECLARE_STATIC_FUNC
T
tensor-tang 已提交
201

T
tensor-tang 已提交
202 203
REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
T
tensor-tang 已提交
204
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
T
tensor-tang 已提交
205

T
tensor-tang 已提交
206 207 208 209
/* VSCAL JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
210 211 212
  explicit VScalKernelImpl(int d) : VScalKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
213 214 215
      y[i] = a * x[i];
    }
  }
T
tensor-tang 已提交
216 217
  void Compute(const T a, T* x) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
218 219 220 221 222 223
      x[i] = a * x[i];
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
224 225 226 227 228
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VScalKernelImpl<float, isa, block>::Compute(const float a, float* x) \
      const {                                                               \
    platform::dynload::cblas_sscal(this->num_, a, x, 1);                    \
T
tensor-tang 已提交
229 230
  }

T
tensor-tang 已提交
231 232 233 234 235
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VScalKernelImpl<double, isa, block>::Compute(const double a, double* x) \
      const {                                                                  \
    platform::dynload::cblas_dscal(this->num_, a, x, 1);                       \
T
tensor-tang 已提交
236 237
  }

T
tensor-tang 已提交
238 239
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
240 241
#endif

T
tensor-tang 已提交
242 243 244 245 246 247 248 249 250
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(     \
      const float a, const float* x, float* y) const { \
    __m256 tmp;                                        \
    __m256 scalar = _mm256_set1_ps(a);                 \
    tmp = _mm256_loadu_ps(x);                          \
    tmp = _mm256_mul_ps(tmp, scalar);                  \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
251
  }
T
tensor-tang 已提交
252 253 254 255 256 257 258 259 260
#define INTRI8_INPLACE_FLOAT(isa)                                          \
  template <>                                                              \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(const float a, float* x) \
      const {                                                              \
    __m256 tmp;                                                            \
    __m256 scalar = _mm256_set1_ps(a);                                     \
    tmp = _mm256_loadu_ps(x);                                              \
    tmp = _mm256_mul_ps(tmp, scalar);                                      \
    _mm256_storeu_ps(x, tmp);                                              \
T
tensor-tang 已提交
261 262 263
  }

#ifdef __AVX__
T
tensor-tang 已提交
264 265
INTRI8_FLOAT(jit::avx);
INTRI8_INPLACE_FLOAT(jit::avx);
T
tensor-tang 已提交
266 267
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
268 269
INTRI8_FLOAT(jit::avx2);
INTRI8_INPLACE_FLOAT(jit::avx2);
T
tensor-tang 已提交
270 271
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
272 273
INTRI8_FLOAT(jit::avx512f);
INTRI8_INPLACE_FLOAT(jit::avx512f);
T
tensor-tang 已提交
274 275 276
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
277 278 279 280
#undef INTRI8_FLOAT
#undef INTRI8_INPLACE_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
281

T
tensor-tang 已提交
282 283 284 285
/* VAddBias JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
286 287 288
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
289 290 291 292 293
      y[i] = x[i] + a;
    }
  }
};

T
tensor-tang 已提交
294 295 296 297 298 299 300
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ8>::Compute(  \
      const float a, const float* x, float* y) const { \
    __m256 tmp = _mm256_loadu_ps(x);                   \
    tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a));       \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
301 302
  }

T
tensor-tang 已提交
303 304 305 306 307 308 309 310 311 312
#define INTRI16_FLOAT(isa)                             \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
      const float a, const float* x, float* y) const { \
    __m256 tmp0 = _mm256_loadu_ps(x);                  \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);              \
    tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a));     \
    tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a));     \
    _mm256_storeu_ps(y, tmp0);                         \
    _mm256_storeu_ps(y + 8, tmp1);                     \
T
tensor-tang 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
428 429 430 431 432
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
433 434 435 436 437 438 439 440
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

T
tensor-tang 已提交
441 442 443 444
REGISTER_JITKERNEL_DEPRECATED(vscal, VScalKernel);
REGISTER_JITKERNEL_DEPRECATED(vaddb, VAddBiasKernel);
REGISTER_JITKERNEL_DEPRECATED(vrelu, VReluKernel);
REGISTER_JITKERNEL_DEPRECATED(videntity, VIdentityKernel);
T
tensor-tang 已提交
445 446 447 448 449

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle