Trainer.cpp 22.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Trainer.h"

#include <fenv.h>
#include <stdio.h>

#include <iomanip>
Y
Yu Yang 已提交
21
#include <iostream>
Z
zhangjinchao01 已提交
22
#include <limits>
Y
Yu Yang 已提交
23
#include <sstream>
Z
zhangjinchao01 已提交
24 25 26

#include <google/protobuf/text_format.h>

Y
Yu Yang 已提交
27 28
#include "paddle/utils/Excepts.h"
#include "paddle/utils/GlobalConstants.h"
Z
zhangjinchao01 已提交
29 30 31 32
#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"

Y
Yu Yang 已提交
33
#include "RemoteParameterUpdater.h"
Z
zhangjinchao01 已提交
34 35 36
#include "TesterConfig.h"
#include "ThreadParameterUpdater.h"
#include "TrainerConfigHelper.h"
Y
Yu Yang 已提交
37 38 39
#include "paddle/gserver/gradientmachines/GradientMachineMode.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/gserver/layers/ValidationLayer.h"
Z
zhangjinchao01 已提交
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
DEFINE_string(config, "", "Trainer config file");

DEFINE_int32(test_period,
             0,
             "if equal 0, do test on all test data at the end of "
             "each pass. While if equal non-zero, do test on all test "
             "data every test_period batches");
DEFINE_bool(test_all_data_in_one_period,
            false,
            "This option was deprecated, since we will always do "
            "test on all test set ");

DEFINE_bool(local, true, "Train in local mode or not");

DEFINE_int32(average_test_period,
             0,
             "Do test on average parameter every so"
             " many batches. MUST be devided by FLAGS_log_period."
             " Default 0 means do not test average parameter");

DEFINE_int32(saving_period, 1, "Save parameteres every so many passes");
DEFINE_int64(saving_period_by_batches,
             0,
             "Save parameters every so many batches in one pass");
DEFINE_string(save_dir, "", "Directory for saving model parameter");
DEFINE_int32(start_pass,
             0,
             "Start training from this pass. "
             "Will load parameter from the previous pass");
DEFINE_int32(test_pass, -1, "Will load parameter start from this pass to test");
DEFINE_int32(test_wait, 0, "Waiting for pass parameter if not exist");
DEFINE_bool(with_cost, true, "enable cost layer or not");
DEFINE_bool(distribute_test, false, "test in distribute mode");

DEFINE_int32(num_passes, 100, "train for so many passes");

DEFINE_string(config_args,
              "",
              "arguments passed to config file."
              "Format: key1=value1,key2=value2");

DEFINE_bool(save_only_one,
            false,
            "Save only parameters in last pass, remove previous.");

DEFINE_string(feat_file, "", "File name of extracted feature.");
DEFINE_string(predict_output_dir,
              "",
              "Directory that saves the predicted results of output layers");
DEFINE_string(model_list, "", "File that saves the model list when evaluation");
Z
zhangjinchao01 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103

namespace paddle {

void Trainer::init(int argc, char** argv) {
  initMain(argc, argv);
  initPython(argc, argv);

  auto config = TrainerConfigHelper::createFromFlagConfig();
  feenableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW);

  init(config);
}

104
void Trainer::init(const std::shared_ptr<TrainerConfigHelper>& config,
Z
zhangjinchao01 已提交
105
                   bool testing,
106 107 108
                   const std::shared_ptr<GradientMachine>& gradientMachine,
                   const std::shared_ptr<DataProvider>& dataProvider,
                   const std::shared_ptr<DataProvider>& testDataProvider) {
Z
zhangjinchao01 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  this->stats_ = std::make_shared<TrainerStats>();

  config_ = config;

  config_->updateConfigFromFlags();

  testing_ = testing;

  // in testing, mode_ may GradientMachine::kTesting or
  // GradientMachine::kSgdSparseCpuTraining

  if (FLAGS_local) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "local and loadsave_parameters_in_pserver can not both true";
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdaterForEachParams();
      LOG(INFO) << "ignore sparse_remote_update=true due to  --local=true";
    }
  }
  if (FLAGS_loadsave_parameters_in_pserver) {
    CHECK(config_->getOptConfig().use_sparse_remote_updater())
        << "no parameter to load from pserver, please check network config";
  }
  if (testing && !FLAGS_loadsave_parameters_in_pserver) {
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdater();
      LOG(INFO) << "because parameter is loaded local,"
                << "tester ignore sparse_remote_update flag";
    }
  }

  CHECK(TrainAlgorithm::isValid(config_->getOptConfig().algorithm()))
      << "invalid algorithm configuration: "
      << config_->getOptConfig().algorithm();

  bool useSparseUpdater = false;
  for (auto& paraConfig : config_->getModelConfig().parameters()) {
    if (paraConfig.sparse_update() || paraConfig.sparse_remote_update()) {
      useSparseUpdater = true;
    }
  }

  if (testing) {
    LOG(INFO) << "trainer: in testing mode";
    if (config_->getOptConfig().use_sparse_remote_updater() ||
        FLAGS_trainer_count > 1) {
      mode_ = GradientMachine::kSgdSparseCpuTraining;
      LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
    } else {
      mode_ = GradientMachine::kTesting;
      LOG(INFO) << "trainer mode: Testing";
    }
  } else if (IGradientMachineMode::tryGetMode(
162 163 164 165 166
                 (int*)&mode_,
                 config_->getOptConfig().algorithm(),
                 FLAGS_trainer_count,
                 FLAGS_local,
                 FLAGS_use_gpu)) {
Z
zhangjinchao01 已提交
167 168
    LOG(INFO) << "Custom trainer mode.";
  } else if ((config_->getOptConfig().algorithm() == TrainAlgorithm::SGD ||
169 170 171
              config_->getOptConfig().algorithm() ==
                  TrainAlgorithm::AsyncSGD) &&
             useSparseUpdater) {
Z
zhangjinchao01 已提交
172 173 174 175 176 177 178 179
    mode_ = GradientMachine::kSgdSparseCpuTraining;
    LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
  } else {
    mode_ = GradientMachine::kNormal;
    LOG(INFO) << "trainer mode: Normal";
  }

  // initialize trainer internal
180 181
  trainerInternal_.init(config_,
                        gradientMachine,
Z
zhangjinchao01 已提交
182
                        TrainerInternalConfig::createFromMode(mode_),
183 184
                        stats_,
                        testing);
Z
zhangjinchao01 已提交
185
  std::unique_ptr<ParameterUtilConfig> paramConfig(
186 187 188 189
      new ParameterUtilConfig(FLAGS_save_only_one,
                              FLAGS_saving_period,
                              FLAGS_loadsave_parameters_in_pserver,
                              FLAGS_config));
Z
zhangjinchao01 已提交
190 191

  paramUtil_.reset(
192 193 194 195
      new paddle::ParameterUtil(config_,
                                std::move(paramConfig),
                                trainerInternal_.getGradientMachine(),
                                trainerInternal_.getParameterUpdater()));
Z
zhangjinchao01 已提交
196

197 198 199
  bool gpuData =
      FLAGS_use_gpu && (!FLAGS_parallel_nn) &&
      (!IGradientMachineMode::dataMustInCpu(mode_, FLAGS_trainer_count));
Z
zhangjinchao01 已提交
200 201

  dataProvider_ = dataProvider;
X
xuwei06 已提交
202
  if (!dataProvider_ && config_->hasDataConfig() && !testing_) {
203
    dataProvider_.reset(DataProvider::create(*config_, *config_, gpuData));
Z
zhangjinchao01 已提交
204
  }
E
emailweixu 已提交
205 206
  if (!testDataProvider_) {
    // No evaluator_ if there is testDataProvider but no dataProvider.
Z
zhangjinchao01 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    evaluator_.reset(trainerInternal_.getGradientMachine()->makeEvaluator());
    currentEvaluator_.reset(
        trainerInternal_.getGradientMachine()->makeEvaluator());
    if (FLAGS_average_test_period > 0 && FLAGS_trainer_id == 0 &&
        config_->getOptConfig().average_window() > 0) {
      CHECK_EQ(FLAGS_average_test_period % FLAGS_log_period, 0)
          << "FLAGS_average_test_period must be divided by FALGS_log_period";
      averageEvaluator_.reset(
          trainerInternal_.getGradientMachine()->makeEvaluator());
    }
  }

  testDataProvider_ = testDataProvider;
  if (!testDataProvider_ && config_->hasTestDataConfig()) {
    testDataProvider_.reset(
222
        DataProvider::create(config_->getTestDataConfig(), *config_, gpuData));
Z
zhangjinchao01 已提交
223 224
  }
  if (testDataProvider_) {
225 226 227 228 229 230
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      LOG(FATAL) << "It's prohibited to set sparse_remote_update "
                 << "in some layers if testing will be under going "
                 << "in the middle of training. You can do testing "
                 << "within separate process.";
    }
E
emailweixu 已提交
231
    createTester();
Z
zhangjinchao01 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  }

  if (!testing &&
      (trainerInternal_.getGradientMachine()->hasStaticParameters())) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "is_static and loadsave_parameters_in_pserver can not both true";
  }
  if (testing) {
    // will load per pass for tester
  } else if (paramUtil_->tryLoadParametersFromConfig()) {
    // load from config already.
  } else {
    trainerInternal_.getGradientMachine()->randParameters();
  }

  // Only non static parameters need to be updated
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  if (trainerInternal_.getParameterUpdater()) {
    trainerInternal_.getParameterUpdater()->init(parameters);

    if (FLAGS_loadsave_parameters_in_pserver && FLAGS_trainer_id == 0) {
      if (testing) {
        // will load per pass for tester
      } else if (!config_->getConfig().init_model_path().empty() &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        paramUtil_->loadParametersWithPath(
259 260 261
            config_->getConfig().init_model_path(),
            false /*local*/,
            true /*remote*/);
Z
zhangjinchao01 已提交
262 263 264
      } else if (config_->getConfig().start_pass() > 0 &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        CHECK(paramUtil_->loadParameters(config_->getConfig().start_pass() - 1,
265 266
                                         false /*local*/,
                                         true /*remote*/));
Z
zhangjinchao01 已提交
267 268 269 270 271 272 273 274 275 276 277 278
      } else {
        trainerInternal_.getParameterUpdater()->randParametersRemote();
      }
    }
  }

  // set current evaluator and evalutor
  trainerInternal_.setCurrentEvaluator(currentEvaluator_.get());
  trainerInternal_.setEvaluator(evaluator_.get());
}

void Trainer::train(size_t numPasses) {
E
emailweixu 已提交
279
  startTrain();
Z
zhangjinchao01 已提交
280 281 282 283
  for (size_t i = 0; i < numPasses; ++i) {
    if (IGradientMachineMode::trainWholeDataInOneBatch(mode_)) {
      trainOnePassBatch(config_->getConfig().start_pass() + i);
    } else {
E
emailweixu 已提交
284
      trainOnePass();
Z
zhangjinchao01 已提交
285 286 287 288 289 290
    }
    if (i < numPasses - 1) {
      dataProvider_->reset();
    }
  }

E
emailweixu 已提交
291
  finishTrain();
Z
zhangjinchao01 已提交
292 293 294
}

static double genPerturbation(real* d, real* grad, size_t dim) {
295
  auto& reng = ThreadLocalRandomEngine::get();
Z
zhangjinchao01 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  std::uniform_real_distribution<double> dist(-1, 1);
  double gradNorm = 0, dNorm = 0;
  for (size_t i = 0; i < dim; ++i) {
    d[i] = dist(reng);
    dNorm += d[i] * d[i];
    gradNorm += grad[i] * grad[i];
  }
  if (gradNorm > 0) {
    real s = 0.5 * sqrt(gradNorm / dNorm);
    for (size_t i = 0; i < dim; ++i) {
      d[i] = s * d[i] + grad[i];
    }
  }
  double delta = 0;
  for (size_t i = 0; i < dim; ++i) {
    delta += grad[i] * d[i];
  }
  return delta;
}

real Trainer::checkGradient() {
  trainerInternal_.getGradientMachine()->start(*config_, dataProvider_);
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  DataBatch dataBatch;
  int32_t batchSize = config_->getOptConfig().batch_size();

  dataProvider_->getNextBatch(batchSize, &dataBatch);

  CHECK(dataBatch.getSize()) << "No data from data provider";
  std::vector<Argument>& inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

  trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
  real cost = Argument::sumCosts(outArgs);
  LOG(INFO) << "original cost=" << cost;
  trainerInternal_.getGradientMachine()->backward();

  real maxDiff = 0;
  char fill = ' ';
  for (auto& parameter : parameters) {
    CpuVector oldPara(parameter->getSize());
    CpuVector newPara(parameter->getSize());
    oldPara.copyFrom(*parameter->getBuf(PARAMETER_VALUE));
    real* newp = newPara.getData();
    real* oldp = oldPara.getData();
    CpuVector cpuGrad(*parameter->getBuf(PARAMETER_GRADIENT));
    real* grad = cpuGrad.getData();
    size_t dim = parameter->getSize();
    std::vector<real> d(dim);

    double delta = genPerturbation(d.data(), grad, dim);

    // use a step such that delta / cost is FLAGS_checkgrad_eps
    real step =
        (delta != 0) ? cost / delta * FLAGS_checkgrad_eps : FLAGS_checkgrad_eps;
    delta *= step;
    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] + step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
    real newCost1 = Argument::sumCosts(outArgs);

    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] - step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
    real newCost2 = Argument::sumCosts(outArgs);

    real trueDelta = 0.5 * (newCost1 - newCost2);
    real diff = (1e-20 + trueDelta) / (1e-20 + delta) - 1;
    LOG(INFO) << std::setiosflags(std::ios::left) << std::setfill(fill)
              << std::setw(20) << parameter->getName()
              << "step=" << std::setw(15) << step << "cost1=" << std::setw(10)
              << newCost1 << "cost2=" << std::setw(10) << newCost2
              << "true_delta=" << std::setw(15) << trueDelta
              << "analytic_delta=" << std::setw(15) << delta << "diff=" << diff
              << (std::abs(diff) > 0.01 ? " ***" : "");

    maxDiff = std::max(maxDiff, std::abs(diff));

    // restore parameter
    parameter->getBuf(PARAMETER_VALUE)->copyFrom(oldPara);
    parameter->setValueUpdated();

    fill = (fill == ' ') ? '.' : ' ';
  }
  return maxDiff;
}

E
emailweixu 已提交
392 393 394 395 396 397 398 399 400 401
void Trainer::startTrain() {
  trainPassContext_.passId = config_->getConfig().start_pass();
  srand(config_->getConfig().start_pass() + 1);
  if (dataProvider_) {
    dataProvider_->reset();
  }

  trainerInternal_.getGradientMachine()->start(*config_, dataProvider_);
}

402
void Trainer::finishTrain() { trainerInternal_.getGradientMachine()->finish(); }
E
emailweixu 已提交
403 404 405 406 407 408 409

void Trainer::startTrainPass() {
  stats_->reset();
  trainPassContext_.batchId = 0;
  trainPassContext_.avgTestCost = 0;
  trainPassContext_.numAvgTests = 0;
  trainPassContext_.passInnerId = 1;
Z
zhangjinchao01 已提交
410 411 412 413 414 415 416

  trainerInternal_.getParameterUpdater()->startPass();
  evaluator_->start();
  if (FLAGS_prev_batch_state) {
    trainerInternal_.getGradientMachine()->resetState();
    trainerInternal_.getGradientMachine()->getState(testState_);
  }
E
emailweixu 已提交
417
}
Z
zhangjinchao01 已提交
418

E
emailweixu 已提交
419 420 421 422 423 424 425
void Trainer::trainOneDataBatch(DataBatch& dataBatch) {
  int num = dataBatch.getSize();
  if (averageEvaluator_) {
    int64_t mod = trainPassContext_.batchId % FLAGS_average_test_period;
    if (mod >= FLAGS_average_test_period - FLAGS_log_period) {
      if (mod == FLAGS_average_test_period - FLAGS_log_period) {
        averageEvaluator_->start();
Z
zhangjinchao01 已提交
426
      }
E
emailweixu 已提交
427 428 429 430
      trainerInternal_.getParameterUpdater()->apply();
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->getState(trainState_);
      }
431 432
      trainPassContext_.avgTestCost += tester_->forwardOneBatch(
          dataBatch, averageEvaluator_.get(), &forwardOutput_);
E
emailweixu 已提交
433 434 435 436 437
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->setState(trainState_);
      }
      trainPassContext_.numAvgTests += num;
      trainerInternal_.getParameterUpdater()->restore();
Z
zhangjinchao01 已提交
438
    }
E
emailweixu 已提交
439 440 441 442
  }
  {
    REGISTER_TIMER("TrainBatch");
    trainerInternal_.trainOneBatch(
443
        trainPassContext_.batchId, dataBatch, &forwardOutput_);
E
emailweixu 已提交
444
  }
Z
zhangjinchao01 已提交
445

E
emailweixu 已提交
446
  if (averageEvaluator_ &&
447 448
      trainPassContext_.batchId % FLAGS_average_test_period ==
          FLAGS_average_test_period - 1) {
E
emailweixu 已提交
449 450
    averageEvaluator_->finish();
    LOG(INFO) << " Averaged parameter:"
451 452
              << " cost="
              << trainPassContext_.avgTestCost / trainPassContext_.numAvgTests
E
emailweixu 已提交
453 454 455 456
              << " Eval: " << *averageEvaluator_;
    trainPassContext_.numAvgTests = 0;
    trainPassContext_.avgTestCost = 0;
  }
Z
zhangjinchao01 已提交
457

E
emailweixu 已提交
458
  ++trainPassContext_.batchId;
Z
zhangjinchao01 已提交
459

E
emailweixu 已提交
460 461 462 463 464
  if (trainPassContext_.batchId % FLAGS_log_period == 0) {
    FOR_TIMING(globalStat.setThreadInfo(true));
    FOR_TIMING(globalStat.printAllStatus());
    FOR_TIMING(globalStat.reset());
  }
Z
zhangjinchao01 已提交
465

W
wangyanfei01 已提交
466 467 468
  if (testDataProvider_ && FLAGS_test_period > 0 &&
      trainPassContext_.batchId % FLAGS_test_period == 0) {
    tester_->testOnePeriod();
E
emailweixu 已提交
469
  }
Z
zhangjinchao01 已提交
470

E
emailweixu 已提交
471
  if (FLAGS_saving_period_by_batches > 0 &&
472 473
      trainPassContext_.batchId >
          FLAGS_saving_period_by_batches * trainPassContext_.passInnerId &&
E
emailweixu 已提交
474 475 476
      0 == FLAGS_trainer_id) {
    trainerInternal_.getParameterUpdater()->catchUpWith();
    if (testDataProvider_) {
W
wangyanfei01 已提交
477
      tester_->testOnePeriod();
Z
zhangjinchao01 已提交
478
    }
479 480
    paramUtil_->saveParametersOnePass(trainPassContext_.passId,
                                      trainPassContext_.passInnerId);
E
emailweixu 已提交
481
    ++trainPassContext_.passInnerId;
Z
zhangjinchao01 已提交
482
  }
E
emailweixu 已提交
483
}
Z
zhangjinchao01 已提交
484

E
emailweixu 已提交
485 486
void Trainer::finishTrainPass() {
  if (trainPassContext_.batchId == 0) {
Z
zhangjinchao01 已提交
487 488 489 490
    // This means no more data from DataProvider
    return;
  }

491 492
  trainerInternal_.finishTrainPass(trainPassContext_.passId,
                                   trainPassContext_.batchId);
Z
zhangjinchao01 已提交
493 494 495 496 497 498 499 500 501

  FOR_TIMING(globalStat.setThreadInfo(true));
  FOR_TIMING(globalStat.printAllStatus());
  FOR_TIMING(globalStat.reset());

  if (testDataProvider_) {
    tester_->testOnePeriod();
  }

502 503
  if (trainPassContext_.passId % FLAGS_saving_period == 0 &&
      FLAGS_trainer_id == 0) {
E
emailweixu 已提交
504
    paramUtil_->saveParametersOnePass(trainPassContext_.passId);
Z
zhangjinchao01 已提交
505
  }
E
emailweixu 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
  ++trainPassContext_.passId;
}

void Trainer::trainOnePass() {
  startTrainPass();
  size_t batchSize = config_->getOptConfig().batch_size();
  while (true) {
    DataBatch dataBatch;

    int num = 0;
    {
      REGISTER_TIMER("getTrainBatch");
      num = dataProvider_->getNextBatch(batchSize, &dataBatch);
    }
    if (num == 0) break;
    CHECK_EQ(num, dataBatch.getSize());
    trainOneDataBatch(dataBatch);
  }

  finishTrainPass();
Z
zhangjinchao01 已提交
526 527 528 529 530 531 532 533 534
}

void Trainer::trainOnePassBatch(int passId) {
  this->stats_->reset();

  trainerInternal_.getParameterUpdater()->startPass();
  const std::vector<Argument> inArgs;
  {
    REGISTER_TIMER("onePass");
535 536
    trainerInternal_.getGradientMachine()->forwardBackward(
        inArgs, nullptr, PASS_TRAIN, nullptr);
Z
zhangjinchao01 已提交
537 538 539 540 541 542 543 544 545
  }

  real cost = .0;
  int64_t num = 0;
  trainerInternal_.getGradientMachine()->getStats(cost, num);
  *stats_ += {num, cost};

  trainerInternal_.getGradientMachine()->onPassEnd();

546
  bool accepted = trainerInternal_.getParameterUpdater()->finishPass(cost);
Z
zhangjinchao01 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

  globalStat.setThreadInfo(true);
  globalStat.printAllStatus();
  globalStat.reset();

  LOG(INFO) << " Pass=" << passId
            << " AcceptedPass=" << (accepted ? acceptedPassId_ : -1)
            << stats_->getStats(false /*withCurrentCost*/);

  if (accepted) {
    if (acceptedPassId_ % FLAGS_saving_period == 0 && FLAGS_trainer_id == 0) {
      paramUtil_->saveParameters(acceptedPassId_);
    }
    acceptedPassId_++;
    if (FLAGS_save_only_one && acceptedPassId_ >= FLAGS_saving_period) {
      paramUtil_->deleteParameters(acceptedPassId_ - FLAGS_saving_period);
    }
  }
}

567 568
real Trainer::calcGradient(const DataBatch& dataBatch,
                           const Vector& value,
Z
zhangjinchao01 已提交
569 570 571
                           Vector& gradient) {
  CHECK_EQ(value.getSize(), gradient.getSize());
  std::vector<ParameterPtr>& parameters =
572
      trainerInternal_.getGradientMachine()->getParameters();
Z
zhangjinchao01 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

  clearGradient();

  size_t offset = 0;
  size_t valueSize = value.getSize();

  for (auto& para : parameters) {
    CHECK_LE(offset + para->getSize(), valueSize);
    VectorPtr val =
        Vector::create(para->getSize(), value.getMemoryHandle(), offset);
    para->getBuf(PARAMETER_VALUE)->copyFrom(*val);
    para->setValueUpdated();
    offset += para->getSize();
  }

  CHECK_EQ(offset, valueSize);

  std::vector<Argument> inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

593 594
  trainerInternal_.getGradientMachine()->forwardBackward(
      inArgs, &outArgs, PASS_TRAIN);
Z
zhangjinchao01 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
  real cost = Argument::sumCosts(outArgs);

  offset = 0;
  for (auto& para : parameters) {
    VectorPtr grad =
        Vector::create(para->getSize(), gradient.getMemoryHandle(), offset);
    if (para->getBuf(PARAMETER_GRADIENT)) {
      grad->copyFrom(*para->getBuf(PARAMETER_GRADIENT));
    }
    offset += para->getSize();
  }

  return cost;
}

void Trainer::clearGradient() {
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  for (auto& parameter : parameters) {
    parameter->clearGradient();
  }
}

int Trainer::getBatchSize() { return config_->getOptConfig().batch_size(); }

E
emailweixu 已提交
620
void Trainer::createTester() {
621 622
  tester_.reset(new paddle::Tester(config_,
                                   createTesterConfig(),
E
emailweixu 已提交
623 624 625 626 627
                                   trainerInternal_.getGradientMachine(),
                                   trainerInternal_.getParameterUpdater(),
                                   testDataProvider_));
}

628
void Trainer::test() { tester_->test(); }
Z
zhangjinchao01 已提交
629 630 631

std::unique_ptr<TesterConfig> Trainer::createTesterConfig() {
  TesterConfig* conf = new TesterConfig;
W
wangyanfei01 已提交
632
  if (FLAGS_test_period) {
Y
Yu Yang 已提交
633 634 635 636
    LOG(WARNING) << "The meaning of --test_period is changed: "
                 << "if equal 0, do test on all test data at the end of "
                 << "each pass. While if equal non-zero, do test on all test "
                 << "data every test_period batches ";
W
wangyanfei01 已提交
637 638
  }
  if (FLAGS_test_all_data_in_one_period) {
Y
Yu Yang 已提交
639 640
    LOG(WARNING) << "--test_all_data_in_one_period was deprecated, since "
                 << "we will always do test on all test set ";
W
wangyanfei01 已提交
641
  }
W
wangyanfei01 已提交
642
  conf->testPeriod = FLAGS_test_period;
Z
zhangjinchao01 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
  conf->prevBatchState = FLAGS_prev_batch_state;
  conf->logPeriod = FLAGS_log_period;
  conf->loadsaveParametersInPserver = FLAGS_loadsave_parameters_in_pserver;
  conf->featFile = FLAGS_feat_file;
  conf->predictOutputDir = FLAGS_predict_output_dir;
  conf->trainerId = FLAGS_trainer_id;
  conf->distributeTest = FLAGS_distribute_test;
  conf->config = FLAGS_config;
  conf->modelList = FLAGS_model_list;
  conf->testPass = FLAGS_test_pass;
  conf->numPasses = FLAGS_num_passes;
  conf->savingPeriod = FLAGS_saving_period;
  conf->testWait = FLAGS_test_wait;
  conf->initModelPath = FLAGS_init_model_path;
  conf->saveOnlyOne = FLAGS_save_only_one;
  conf->testing = testing_;
  conf->mode = mode_;
  conf->trainState = &trainState_;
  conf->testState = &testState_;
  return std::unique_ptr<TesterConfig>(conf);
}

665
ParameterUtil* Trainer::getParameterUtilPtr() { return paramUtil_.get(); }
Z
zhangjinchao01 已提交
666
}  // namespace paddle