communicator.h 6.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <atomic>
Q
Qiao Longfei 已提交
18 19 20 21 22
#include <deque>
#include <memory>
#include <string>
#include <vector>

Q
Qiao Longfei 已提交
23 24
#include <ThreadPool.h>

Q
Qiao Longfei 已提交
25 26 27
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/operators/distributed/rpc_common.h"
Q
Qiao Longfei 已提交
28 29
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {
namespace distributed {

using Scope = framework::Scope;
using Variable = framework::Variable;

template <typename T>
class BlockingQueue {
 public:
  explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
    PADDLE_ENFORCE_GT(capacity_, 0, "The capacity must be greater than 0.");
  }

  bool Push(const T& elem) {
Q
Qiao Longfei 已提交
49 50 51 52 53 54 55
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.push_back(elem);
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
56 57 58 59
    return true;
  }

  bool Push(T&& elem) {
Q
Qiao Longfei 已提交
60 61 62 63 64 65 66
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.emplace_back(std::move(elem));
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
67 68 69 70 71
    return true;
  }

  T Pop() {
    std::unique_lock<std::mutex> lock(mutex_);
Q
Qiao Longfei 已提交
72
    cv_.wait(lock, [=] { return !queue_.empty(); });
Q
Qiao Longfei 已提交
73 74
    T rc(std::move(queue_.front()));
    queue_.pop_front();
Q
Qiao Longfei 已提交
75
    cv_.notify_one();
Q
Qiao Longfei 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    return rc;
  }

  size_t Cap() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return capacity_;
  }

  size_t Size() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return queue_.size();
  }

 private:
  const size_t capacity_;
  std::deque<T> queue_;

  mutable std::mutex mutex_;
Q
Qiao Longfei 已提交
94
  std::condition_variable cv_;
Q
Qiao Longfei 已提交
95 96
};

Q
Qiao Longfei 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

inline void MergeVars(const std::string& var_name,
                      const std::vector<std::shared_ptr<Variable>>& vars,
                      Scope* scope) {
  PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
  auto cpu_place = platform::CPUPlace();
  auto& var0 = vars[0];
  auto* out_var = scope->Var(var_name);
  if (var0->IsType<framework::LoDTensor>()) {
    auto dims = var0->Get<framework::LoDTensor>().dims();
Q
Qiao Longfei 已提交
110
    VLOG(3) << "merge " << var_name << " LoDTensor dims " << dims;
Q
Qiao Longfei 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    // init output tensor
    auto* out_t = out_var->GetMutable<framework::LoDTensor>();
    out_t->mutable_data<float>(dims, cpu_place);

    // check the input dims
    for (auto& var : vars) {
      auto& var_t = var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(var_t.dims(), dims, "should have the same dims");
    }

    // set output tensor to 0.
    auto cpu_ctx = paddle::platform::CPUDeviceContext();
    math::SetConstant<paddle::platform::CPUDeviceContext, float>
        constant_functor;
    constant_functor(cpu_ctx, out_t, static_cast<float>(0));

    // sum all vars to out
    auto result = EigenVector<float>::Flatten(*out_t);
    for (auto& var : vars) {
      auto& in_t = var->Get<framework::LoDTensor>();
      auto in = EigenVector<float>::Flatten(in_t);
      result.device(*cpu_ctx.eigen_device()) = result + in;
    }
  } else if (var0->IsType<framework::SelectedRows>()) {
    auto& slr0 = var0->Get<framework::SelectedRows>();
    auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
    out_slr->mutable_rows()->clear();
    out_slr->mutable_value()->mutable_data<float>({{}}, cpu_place);
    std::vector<const paddle::framework::SelectedRows*> inputs;
    inputs.reserve(vars.size());
    for (auto& var : vars) {
      inputs.push_back(&var->Get<framework::SelectedRows>());
    }
    math::scatter::MergeAdd<paddle::platform::CPUDeviceContext, float>
        merge_add;
    auto dev_ctx = paddle::platform::CPUDeviceContext();
    merge_add(dev_ctx, inputs, out_slr, false);
    VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
            << " dims: " << slr0.value().dims();
  } else {
    PADDLE_THROW("unsupported var type!");
  }
}

Q
Qiao Longfei 已提交
156 157
using RpcCtxMap = std::unordered_map<std::string, RpcContext>;

Q
Qiao Longfei 已提交
158 159
class Communicator {
 public:
Q
Qiao Longfei 已提交
160
  Communicator(const RpcCtxMap& send_varname_to_ctx,
Q
Qiao Longfei 已提交
161
               const RpcCtxMap& recv_varname_to_ctx, Scope* recv_scope);
Q
Qiao Longfei 已提交
162

Q
Qiao Longfei 已提交
163
  ~Communicator();
Q
Qiao Longfei 已提交
164 165 166 167 168 169 170

  void Start();

  // send grad
  void Send(const std::string& var_name, const framework::Scope& scope);

 private:
Q
Qiao Longfei 已提交
171 172
  // recv all parameter
  void RecvAll();
Q
Qiao Longfei 已提交
173 174 175
  void SendThread();
  void RecvThread();

Q
Qiao Longfei 已提交
176
  bool running_ = false;
Q
Qiao Longfei 已提交
177 178 179
  std::unordered_map<std::string,
                     std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
      send_varname_to_queue_;
Q
Qiao Longfei 已提交
180 181
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
Q
Qiao Longfei 已提交
182 183 184 185
  std::unique_ptr<std::thread> send_thread_;
  std::unique_ptr<std::thread> recv_thread_;
  Scope* recv_scope_;                  // should be global scope
  std::unique_ptr<Scope> send_scope_;  // an independent scope
Q
Qiao Longfei 已提交
186 187
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
188
  std::atomic_uint grad_num_{0};  // the num of gradient sent since last recv
Q
Qiao Longfei 已提交
189 190 191 192 193 194 195 196

  // the following code is for initialize the commnunicator
 public:
  static void Init(const RpcCtxMap& send_varname_to_ctx,
                   const RpcCtxMap& recv_varname_to_ctx, Scope* recv_scope) {
    InitImpl(send_varname_to_ctx, recv_varname_to_ctx, recv_scope);
  }

Q
can run  
Qiao Longfei 已提交
197
  static Communicator* GetInstance();
Q
Qiao Longfei 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

 private:
  // Init is called by GetInstance.
  static void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                       const RpcCtxMap& recv_varname_to_ctx,
                       Scope* recv_scope) {
    if (communicator_ == nullptr) {
      communicator_.reset(new Communicator(send_varname_to_ctx,
                                           recv_varname_to_ctx, recv_scope));
    }
  }

 private:
  static std::once_flag init_flag_;
  static std::unique_ptr<Communicator> communicator_;
Q
Qiao Longfei 已提交
213 214 215 216 217
};

}  // namespace distributed
}  // namespace operators
}  // namespace paddle