layer.h 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17
#include <map>
18 19
#include <string>
#include <vector>
X
Xin Pan 已提交
20 21 22
#include "pybind11/pybind11.h"

#include "Python.h"
23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace imperative {

X
Xin Pan 已提交
31 32
namespace py = ::pybind11;

X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
59
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
85 86 87 88
class OpBase;

class VarBase {
 public:
M
minqiyang 已提交
89 90 91 92 93 94 95 96 97
  VarBase()
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
        var_(new framework::Variable()),
        grads_(new framework::Variable()),
        stop_gradient_(false) {}

  explicit VarBase(bool stop_gradient)
98 99 100
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
Xin Pan 已提交
101
        var_(new framework::Variable()),
102
        grads_(new framework::Variable()),
103
        stop_gradient_(stop_gradient) {}
104

M
minqiyang 已提交
105
  virtual ~VarBase() {}
106

X
Xin Pan 已提交
107
  void RunBackward();
108 109 110

  framework::LoDTensor& Grad();

M
minqiyang 已提交
111 112 113 114 115 116 117
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

118
  OpBase* pre_op_;
X
Xin Pan 已提交
119
  std::string pre_op_out_name_;
120 121 122 123 124
  int pre_op_out_idx_;

  framework::VarDesc* var_desc_;
  framework::Variable* var_;
  framework::Variable* grads_;
125 126

  bool stop_gradient_;
127 128 129 130
};

class OpBase {
 public:
X
Xin Pan 已提交
131
  OpBase() : op_desc_(nullptr), grad_op_desc_(nullptr) {}
132 133 134 135 136

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
137
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
138 139 140

  framework::OpDesc* op_desc_;
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
141

X
Xin Pan 已提交
142 143
  std::map<std::string, std::vector<VarBase*>> input_vars_;
  std::map<std::string, std::vector<VarBase*>> output_vars_;
X
Xin Pan 已提交
144 145
  std::map<std::string, std::vector<OpBase*>> pre_ops_;
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
146

X
Xin Pan 已提交
147 148
  std::map<std::string, std::vector<framework::Variable*>> grad_input_vars_;
  std::map<std::string, std::vector<framework::Variable*>> grad_output_vars_;
149 150 151 152 153 154 155 156 157 158 159
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
160
};
161

X
Xin Pan 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static void CallPythonFunc(py::object* callable,
                           const std::vector<framework::LoDTensor>& ins,
                           std::vector<framework::LoDTensor*>* outs) {
  py::gil_scoped_acquire guard;
  py::tuple in_args(ins.size());
  for (size_t i = 0; i < ins.size(); ++i) {
    in_args[i] = ins[i].IsInitialized() ? py::cast(ins[i]) : py::cast(nullptr);
  }

  auto ret = (*callable)(in_args);
  auto ret_tuple = py::cast<py::tuple>(ret);
  size_t ret_num = py::len(ret_tuple);
  for (size_t i = 0; i < ret_num; ++i) {
    try {
      auto* py_out_tensor = py::cast<framework::LoDTensor*>(ret_tuple[i]);
      PADDLE_ENFORCE_NOT_NULL(py_out_tensor,
                              "Output tensor %d should not be nullptr", i);
      outs->push_back(py_out_tensor);
    } catch (py::cast_error&) {
      PADDLE_THROW("The %d-th output must be LoDTensor", i);
    }
  }
}

class PyLayer {
 public:
  virtual ~PyLayer() {}

  static std::vector<VarBase> Apply(py::object* callable,
                                    const std::vector<VarBase>& inputs) {
    std::vector<VarBase> outputs;
    std::vector<framework::LoDTensor> tensor_inputs;
    std::vector<framework::LoDTensor*> tensor_outputs;

    for (const VarBase& in : inputs) {
      tensor_inputs.push_back(in.var_->Get<framework::LoDTensor>());
    }

    CallPythonFunc(callable, tensor_inputs, &tensor_outputs);
    return outputs;
X
Xin Pan 已提交
202
  }
203 204 205 206
};

}  // namespace imperative
}  // namespace paddle