test_split_op.py 17.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import paddle
Y
Yancey 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20
import paddle.fluid as fluid
21
from paddle.fluid import compiler, Program, program_guard, core
H
hong 已提交
22
from paddle.fluid.framework import _test_eager_guard
Y
Yancey 已提交
23 24 25 26


class TestSplitOp(OpTest):
    def setUp(self):
T
fix ut  
typhoonzero 已提交
27
        self._set_op_type()
28
        self.dtype = self.get_dtype()
Y
Yancey1989 已提交
29
        axis = 1
30 31 32 33 34 35 36 37 38 39 40 41
        if self.dtype == np.uint16:
            x = np.random.random((4, 5, 6)).astype(np.float32)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': convert_float_to_uint16(x)}
            self.outputs = {'Out': [('out%d' % i, convert_float_to_uint16(out[i])) \
                for i in range(len(out))]}
        else:
            x = np.random.random((4, 5, 6)).astype(self.dtype)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': x}
            self.outputs = {'Out': [('out%d' % i, out[i]) \
                for i in range(len(out))]}
Y
Yancey1989 已提交
42
        self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
Y
Yancey 已提交
43

44
    def get_dtype(self):
45
        return "float64"
46

T
typhoonzero 已提交
47 48 49
    def _set_op_type(self):
        self.op_type = "split"

Y
Yancey 已提交
50 51 52
    def test_check_output(self):
        self.check_output()

Y
Yancey1989 已提交
53 54
    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])
Y
Yancey 已提交
55 56


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
# test with attr(num)
class TestSplitOp_2(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
82
        return "float64"
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(axis) is Tensor
class TestSplitOp_AxisTensor(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {
            'X': self.x,
            'AxisTensor': np.array([self.axis]).astype("int32")
        }
        self.attrs = {'sections': self.sections, 'num': self.num}

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
118
        return "float64"
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(sections) is list containing Tensor
class TestSplitOp_SectionsTensor(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}

        sections_tensor = []
        for index, ele in enumerate(self.sections):
            sections_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs['SectionsTensorList'] = sections_tensor

        self.attrs = {
            'axis': self.axis,
            'sections': self.sections_infer,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 1
        self.sections = [2, 1, 2]
        self.sections_infer = [-1, -1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
164
        return "float64"
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestSplitOp_unk_section(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = [2, 1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
200
        return "float64"
201 202 203 204 205 206 207 208 209 210 211

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


T
typhoonzero 已提交
212 213 214 215 216
class TestSplitByrefOp(OpTest):
    def _set_op_type(self):
        self.op_type = "split_byref"


217 218 219 220
#----------------Split Fp16----------------


def create_test_fp16(parent):
221 222
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
223 224 225 226 227 228 229 230 231 232 233 234 235 236
    class TestSplitFp16(parent):
        def get_dtype(self):
            return np.float16

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestSplitFp16.__name__ = cls_name
    globals()[cls_name] = TestSplitFp16


create_test_fp16(TestSplitOp)

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
#----------------Split Bf16----------------


def create_test_bf16(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestSplitBf16(parent):
        def get_dtype(self):
            return np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestSplitBf16.__name__ = cls_name
    globals()[cls_name] = TestSplitBf16


create_test_bf16(TestSplitOp)

261

262
class TestSplitAPI(unittest.TestCase):
263 264
    def test_api(self):
        input_1 = np.random.random([4, 5, 6]).astype("int32")
265 266 267
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
268 269 270 271
        x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1')
        x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2')

        out_0, out_1, out_2 = fluid.layers.split(
272 273 274 275
            input=x_1,
            num_or_sections=[positive_2_int64, positive_1_int32, -1],
            dim=positive_1_int64)

276
        out_3, out_4, out_5 = fluid.layers.split(
277
            input=x_1, num_or_sections=[2, 1, 2], dim=positive_1_int32)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        fluid.layers.split(input=x_2, num_or_sections=2, dim=2)

        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_0, res_1, res_2, res_3, res_4, res_5] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_1,
                  "x_2": input_1},
            fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5])

        out = np.split(input_1, [2, 3], 1)
        assert np.array_equal(res_0, out[0])
        assert np.array_equal(res_1, out[1])
        assert np.array_equal(res_2, out[2])
        assert np.array_equal(res_3, out[0])
        assert np.array_equal(res_4, out[1])
        assert np.array_equal(res_5, out[2])


296
class TestSplitOpError(unittest.TestCase):
297 298 299 300 301 302 303 304 305
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of axis in split_op should be int or Variable.
            def test_axis_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3')
                fluid.layers.split(input=x6, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type)

306 307 308 309 310 311 312 313
            # The type of axis in split_op should be int or Variable.
            def test_axis_variable_type():
                x9 = fluid.layers.data(shape=[4], dtype='float16', name='x9')
                x10 = fluid.layers.data(shape=[1], dtype='float16', name='x10')
                fluid.layers.split(input=x9, num_or_sections=2, dim=x10)

            self.assertRaises(TypeError, test_axis_variable_type)

314 315 316 317 318 319 320
            # The type of num_or_sections in split_op should be int, tuple or list.
            def test_num_or_sections_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4')
                fluid.layers.split(input=x6, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type)

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
            def test_num_or_sections_type_tensor():
                x7 = fluid.layers.data(shape=[4], dtype='float16', name='x5')
                paddle.split(input=x7, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type_tensor)

            def test_axis_type_tensor():
                x8 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
                paddle.split(input=x8, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type_tensor)


class API_TestSplit(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1], dtype='int32')
339
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=data2)
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            input2 = np.array([2]).astype('int32')
            r0, r1, r2, = exe.run(feed={"data1": input1,
                                        "data2": input2},
                                  fetch_list=[x0, x1, x2])
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))
            self.assertTrue(np.allclose(ex_x2, r2))


class API_TestSplit2(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
357
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=2)
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            r0, r1, r2, = exe.run(feed={"data1": input1},
                                  fetch_list=[x0, x1, x2])
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))
            self.assertTrue(np.allclose(ex_x2, r2))


class API_TestSplit3(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
373
            x0, x1 = paddle.split(data, num_or_sections=(3, 7), axis=1)
374 375 376 377 378 379 380 381 382 383 384 385 386 387
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
            ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))


class API_TestSplit4(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
            index = fluid.layers.data('index', shape=[1], dtype='int32')
388
            x0, x1 = paddle.split(data, num_or_sections=(3, index), axis=1)
389 390 391 392 393 394 395 396 397 398 399 400 401
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            input2 = np.array([7]).astype('int32')
            r0, r1 = exe.run(feed={"data": input1,
                                   "index": input2},
                             fetch_list=[x0, x1])
            ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))


class API_TestDygraphSplit(unittest.TestCase):
402 403 404 405
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
406
            input = paddle.to_tensor(input_1)
407 408 409 410 411
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
H
hong 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

            with _test_eager_guard():
                # input is a variable which shape is [4, 6, 6]
                input = paddle.to_tensor(input_1)
                input.stop_gradient = False
                x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
                eager_x0_out = x0.numpy()
                eager_x1_out = x1.numpy()
                eager_x2_out = x2.numpy()
                loss = x0.sum()
                loss.backward()
                manul_grad = np.zeros_like(input_1)
                manul_grad[:, :2, :] = 1
                self.assertTrue(np.allclose(input.gradient(), manul_grad))
                self.assertTrue(np.allclose(ex_x0, eager_x0_out))
                self.assertTrue(np.allclose(ex_x1, eager_x1_out))
                self.assertTrue(np.allclose(ex_x2, eager_x2_out))

430 431 432 433 434 435 436 437
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("bool")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
438
            input = paddle.to_tensor(input_1)
439 440 441 442 443 444 445 446 447 448 449 450 451
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_out_tensor_input(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
452
            input = paddle.to_tensor(input_1)
453 454 455 456 457 458 459 460 461 462 463 464
            num1 = paddle.full(shape=[1], fill_value=2, dtype='int32')
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[num1, 2, 2], axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_axis_tensor_input(self):
465 466 467
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
H
hong 已提交
468
            input = paddle.to_tensor(input_1)
469 470 471
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[2, 2, 2], axis=num1)
472 473 474 475 476 477 478 479
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

480

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
class API_TestEmptySplit(unittest.TestCase):
    def test_axis_input_empty_section(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([8, 6, 6]).astype("float32")
            # input is a variable which shape is [8, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = paddle.split(input, num_or_sections=[5, 0, 3])
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, [
                5,
                5,
            ])
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))


Y
Yancey 已提交
500 501
if __name__ == '__main__':
    unittest.main()