sample_trainer_config.conf 2.9 KB
Newer Older
Z
zhangjinchao01 已提交
1
#edit-mode: -*- python -*-
2
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

TrainData(SimpleData(
X
Xin Pan 已提交
19
            files = "legacy/trainer/tests/sample_filelist.txt",
Z
zhangjinchao01 已提交
20 21 22 23 24
            feat_dim = 3,
            context_len = 0,
            buffer_capacity = 1000000))

TestData(SimpleData(
X
Xin Pan 已提交
25
           files = "legacy/trainer/tests/sample_filelist.txt",
Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
           feat_dim = 3,
           context_len = 0,
           buffer_capacity = 1000000))

settings(batch_size = 100)

data = data_layer(name='input', size=3)

fc1 = fc_layer(input=data, size=5,
               bias_attr=False,
               act=SigmoidActivation())

fc2 = fc_layer(input=data, size=9,
               bias_attr=False,
               act=LinearActivation())

fc3 = fc_layer(input=data, size=3,
               bias_attr=False,
               act=TanhActivation())

fc4 = fc_layer(input=data, size=5,
               bias_attr=False,
               act=LinearActivation(),
               param_attr=ParamAttr(name='sharew'))

fc5 = fc_layer(input=data, size=5,
               bias_attr=False,
               act=BReluActivation())

fc6 = fc_layer(input=data, size=5,
               bias_attr=False,
               act=SoftReluActivation())

fc7 = fc_layer(input=data, size=3,
               bias_attr=False,
               act=SquareActivation())

fc8 = fc_layer(input=data, size=5,
               bias_attr=True,
               act=SquareActivation())

with mixed_layer(size=3, act=SoftmaxActivation()) as layer9:
    layer9 += full_matrix_projection(input=fc1)
    layer9 += full_matrix_projection(input=fc2)
    layer9 += full_matrix_projection(input=fc3)
    layer9 += trans_full_matrix_projection(input=fc4,
                                           param_attr=ParamAttr(name='sharew'))
    layer9 += full_matrix_projection(input=fc5)
    layer9 += full_matrix_projection(input=fc6)
    layer9 += full_matrix_projection(input=fc7)
    layer9 += full_matrix_projection(input=fc8)

if get_config_arg('with_cost', bool, True):
    # This is for training the neural network.
    # We need to have another data layer for label
    # and a layer for calculating cost
    lbl = data_layer(name='label', size=1)
    outputs(classification_cost(input=layer9, label=lbl))
else:    
    # This is for prediction where we don't have label
    # and don't need to calculate cost
    outputs(layer9)