test_Matrix.cpp 8.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef PADDLE_WITH_CUDA
16
/**
17 18
 * This test file use autotest::AutoCompare and cmpWithArg to compares the
 * implementation of CPU and GPU member function in Matrix.cpp.
19 20 21 22 23
 */

#include <gtest/gtest.h>
#include "TestUtils.h"

H
hedaoyuan 已提交
24 25
using paddle::BaseMatrix;
using paddle::Matrix;
26
using paddle::CpuMatrix;
H
hedaoyuan 已提交
27 28
using paddle::CpuIVector;
using paddle::CpuSparseMatrix;
29
using autotest::AutoCompare;
30

31 32 33 34 35 36 37 38 39 40 41 42
void testBilinearFwdBwd(int numSamples,
                        int imgSizeH,
                        int imgSizeW,
                        int channels) {
  int inWidth = imgSizeH * imgSizeW * channels;
  int outWidth = 2 * imgSizeH * 2 * imgSizeW * channels;
  real ratioH = 0.5;
  real ratioW = 0.5;

  AutoCompare forward(numSamples, outWidth);
  CpuMatrix arg1(numSamples, inWidth);
  arg1.randomizeUniform();
43 44 45 46 47 48 49 50 51
  forward.cmpWithArg(&Matrix::bilinearForward,
                     arg1,
                     imgSizeH,
                     imgSizeW,
                     2 * imgSizeH,
                     2 * imgSizeW,
                     channels,
                     ratioH,
                     ratioW);
52 53 54 55

  AutoCompare backward(numSamples, inWidth);
  CpuMatrix arg2(numSamples, outWidth);
  arg2.randomizeUniform();
56 57 58 59 60 61 62 63 64
  backward.cmpWithArg(&Matrix::bilinearBackward,
                      arg2,
                      2 * imgSizeH,
                      2 * imgSizeW,
                      imgSizeH,
                      imgSizeW,
                      channels,
                      ratioH,
                      ratioW);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
}

TEST(Matrix, BilinearFwdBwd) {
  for (auto numSamples : {5, 10}) {
    for (auto channels : {8, 16}) {
      for (auto imgSizeH : {14, 28}) {
        for (auto imgSizeW : {16, 30}) {
          VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
                  << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW;
          testBilinearFwdBwd(numSamples, imgSizeH, imgSizeW, channels);
        }
      }
    }
  }
}

void testMatrixAddBias(int height, int width, real scale) {
  AutoCompare test(height, width);
  CpuMatrix arg1(1, width);
  arg1.randomizeUniform();
85 86 87 88
  test.cmpWithArg(
      static_cast<void (Matrix::*)(Matrix&, real)>(&Matrix::addBias),
      arg1,
      scale);
89 90 91 92 93 94 95 96
}

void testMatrixAddDotMulMMV(int height, int width) {
  AutoCompare test(height, width);
  CpuMatrix arg1(height, width);
  CpuMatrix arg2(1, width);
  arg1.randomizeUniform();
  arg2.randomizeUniform();
97
  test.cmpWithArg(&BaseMatrix::addDotMulMMV, arg1, arg2);
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
}

TEST(Matrix, unary) {
  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
      VLOG(3) << " height=" << height << " width=" << width;
      testMatrixAddBias(height, width, 1.0);
      testMatrixAddBias(height, width, 3.5);
      testMatrixAddDotMulMMV(height, width);
    }
  }
}

void testMatrixAddAtOffset(int height, int width1, int width2, int offset) {
  AutoCompare test(height, width2);
  CpuMatrix arg1(height, width1);
  arg1.randomizeUniform();
115
  test.cmpWithArg(&Matrix::addAtOffset, arg1, offset);
116 117 118 119 120 121
}

void testMatrixAssignAtOffset(int height, int width1, int width2, int offset) {
  AutoCompare test(height, width2);
  CpuMatrix arg1(height, width1);
  arg1.randomizeUniform();
122
  test.cmpWithArg(&Matrix::assignAtOffset, arg1, offset);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
}

TEST(Matrix, AtOffset) {
  for (auto height : {1, 11, 73, 128, 200}) {
    for (auto width1 : {1, 32, 100, 512, 1000}) {
      for (auto width2 : {1, 32, 100, 512, 1000}) {
        int columnOffset = 0;
        int offset = std::abs(width1 - width2);
        if (offset) {
          columnOffset = std::rand() % offset;
        }
        VLOG(3) << " height=" << height << " width1=" << width1
                << " width2=" << width2 << " columnOffset = " << columnOffset;
        testMatrixAddAtOffset(height, width1, width2, columnOffset);
        testMatrixAssignAtOffset(height, width1, width2, columnOffset);
      }
    }
  }
}

void testMatrixSelectRows(int numSamples, int tableSize, int inputDim) {
  AutoCompare test(numSamples, inputDim);
  CpuMatrix arg1(tableSize, inputDim);
  CpuIVector arg2(numSamples);
  arg1.randomizeUniform();
  arg2.rand(tableSize);
149
  test.cmpWithArg(&Matrix::selectRows, arg1, arg2);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

TEST(Matrix, tableProjection) {
  for (auto numSamples : {10, 100, 1000, 10000, 80000}) {
    for (auto tableSize : {10, 100}) {
      for (auto inputDim : {20, 50}) {
        VLOG(3) << " numSamples=" << numSamples << " tableSize=" << tableSize
                << " inputDim=" << inputDim;
        testMatrixSelectRows(numSamples, tableSize, inputDim);
      }
    }
  }
}

void testMatrixCopyByRowIndex(int outHeight, int inHeight, int width) {
  AutoCompare test(outHeight, width);
  CpuMatrix arg1(inHeight, width);
  CpuIVector arg2(outHeight);
  arg1.randomizeUniform();
  arg2.rand(inHeight);
170
  test.cmpWithArg(&Matrix::copyByRowIndex, arg1, arg2);
171
}
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
TEST(Matrix, copyByRowIndex) {
  for (auto outHeight : {31, 500, 1000}) {
    for (auto inHeight : {17, 257, 500, 1200}) {
      for (auto width : {512, 1024}) {
        VLOG(3) << outHeight << " " << inHeight << " " << width;
        testMatrixCopyByRowIndex(outHeight, inHeight, width);
      }
    }
  }
}

void testParamReluForward(int height, int width, int w_height, int w_width) {
  AutoCompare test(height, width);
  CpuMatrix arg1(height, width);
  CpuMatrix arg2(w_height, w_width);
  arg1.randomizeUniform();
  arg2.randomizeUniform();
  arg1.add(-0.5);
191
  test.cmpWithArg(&Matrix::paramReluForward, arg1, arg2);
192 193 194 195 196 197 198 199 200
}

void testParamReluBackwardW(int height, int width, int w_height, int w_width) {
  AutoCompare test(w_height, w_width);
  CpuMatrix arg1(height, width);
  CpuMatrix arg2(height, width);
  arg1.randomizeUniform();
  arg2.randomizeUniform();
  arg2.add(-0.5);
201
  test.cmpWithArg(&Matrix::paramReluBackwardW, arg1, arg2);
202 203 204
}

TEST(Matrix, paramRelu) {
H
hedaoyuan 已提交
205 206
  for (auto height : {10, 40, 100}) {
    for (auto width : {10, 40, 100}) {
207 208
      for (auto w_height : {1, 2}) {
        for (auto w_width : {1, 2}) {
H
hedaoyuan 已提交
209
          if (width % (w_height * w_width)) continue;
210 211 212 213 214 215 216 217 218 219 220 221
          testParamReluForward(height, width, w_height, w_width);
          testParamReluBackwardW(height, width, w_height, w_width);
        }
      }
    }
  }
}

void testAddSharedBias(int numSamples, int dim, int channel) {
  AutoCompare test(numSamples, dim);
  CpuMatrix arg1(1, channel);
  arg1.randomizeUniform();
222
  test.cmpWithArg(&Matrix::addSharedBias, arg1, 1.0);
223 224 225 226 227 228
}

void testCollectSharedBias(int numSamples, int dim, int channel) {
  AutoCompare test(1, channel);
  CpuMatrix arg1(numSamples, dim);
  arg1.randomizeUniform();
229
  test.cmpWithArg(&Matrix::collectSharedBias, arg1, 1.0);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
}

TEST(Matrix, sharedBias) {
  for (auto numSamples : {1, 100, 520}) {
    for (auto dim : {100 * 16, 100 * 32}) {
      for (auto channel : {8, 16}) {
        VLOG(3) << " numSamples=" << numSamples << " dim=" << dim
                << " channel=" << channel;
        testAddSharedBias(numSamples, dim, channel);
        testCollectSharedBias(numSamples, dim, channel);
      }
    }
  }
}

void testMultiBinaryLabelCrossEntropy(int numSamples, int dim) {
  AutoCompare forward(numSamples, 1);
  CpuMatrix arg1(numSamples, dim);
248 249
  CpuSparseMatrix arg2(
      numSamples, dim, numSamples, paddle::NO_VALUE, paddle::SPARSE_CSR);
250 251 252 253 254 255 256 257

  CpuMatrix output1(numSamples, dim);
  output1.randomizeUniform();
  output1.softmax(arg1);
  for (int i = 0; i < numSamples; i++) {
    const unsigned int id = std::rand() % dim;
    arg2.setRow(i, 1, &id, nullptr);
  }
258
  forward.cmpWithArg(&Matrix::multiBinaryLabelCrossEntropy, arg1, arg2);
259 260

  AutoCompare backward(numSamples, dim);
261
  backward.cmpWithArg(&Matrix::multiBinaryLabelCrossEntropyBp, arg1, arg2);
262
}
263

264 265 266 267 268 269 270
TEST(Matrix, multiBinaryCrossEntropy) {
  for (auto numSamples : {100, 1000, 10000}) {
    for (auto dim : {100, 1000, 10000}) {
      VLOG(3) << " numSamples=" << numSamples << " dim=" << dim;
      testMultiBinaryLabelCrossEntropy(numSamples, dim);
    }
  }
271 272 273
}

#endif