OriginalOptimizerApi.h 8.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
H
hedaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
H
hedaoyuan 已提交
14 15 16

#pragma once

X
Xin Pan 已提交
17
#include "paddle/legacy/math/Vector.h"
X
Xin Pan 已提交
18
#include "paddle/legacy/utils/GlobalConstants.h"
H
hedaoyuan 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

using namespace paddle;  // NOLINT

void SparseMomentumParameterOptimizer(const VectorPtr vecs[],
                                      real alpha,
                                      real beta,
                                      real gamma,
                                      real tau,
                                      real learningRate) {
  vecs[PARAMETER_MOMENTUM_UT]->add(*vecs[PARAMETER_GRADIENT],
                                   -alpha * gamma * learningRate);
  vecs[PARAMETER_MOMENTUM_VT]->add(*vecs[PARAMETER_GRADIENT],
                                   tau * alpha * gamma * learningRate);
  vecs[PARAMETER_VALUE]->add(*vecs[PARAMETER_MOMENTUM_UT],
                             tau / beta + 1.0 / alpha,
H
hedaoyuan 已提交
34 35
                             *vecs[PARAMETER_MOMENTUM_VT],
                             1.0 / beta);
H
hedaoyuan 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49
}

void AdagradParameterOptimizer(const VectorPtr vecs[],
                               real epsilon,
                               real learningRate,
                               real momentum,
                               real decayRate) {
  vecs[PARAMETER_GRADIENT_SQURESUM1]->addSquare(*vecs[PARAMETER_GRADIENT],
                                                1.0f);
  vecs[PARAMETER_LEARNING_RATE]->add(*vecs[PARAMETER_GRADIENT_SQURESUM],
                                     *vecs[PARAMETER_GRADIENT_SQURESUM1]);
  vecs[PARAMETER_LEARNING_RATE]->add(epsilon);
  vecs[PARAMETER_LEARNING_RATE]->invSqrt(*vecs[PARAMETER_LEARNING_RATE]);

H
hedaoyuan 已提交
50 51 52 53 54 55
  vecs[PARAMETER_VALUE]->sgdUpdate(*vecs[PARAMETER_GRADIENT],
                                   *vecs[PARAMETER_MOMENTUM],
                                   *vecs[PARAMETER_LEARNING_RATE],
                                   learningRate,
                                   momentum,
                                   decayRate);
H
hedaoyuan 已提交
56 57 58 59 60 61 62 63 64
}

void AdaDeltaParameterOptimizer(const VectorPtr vecs[],
                                real rou,
                                real epsilon,
                                real learningRate,
                                real momentum,
                                real decayRate) {
  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
H
hedaoyuan 已提交
65 66
  vecs[PARAMETER_GRADIENT_SQURESUM]->decayAddSquare(
      *vecs[PARAMETER_GRADIENT], rou, 1.0f - rou);
H
hedaoyuan 已提交
67 68 69 70

  // learn_rate = sqrt( ( E(dx_{t-1}^2) + epsilon ) / ( E(g_t^2) + epsilon ) )
  vecs[PARAMETER_LEARNING_RATE]->dotDiv(*vecs[PARAMETER_GRADIENT_SQURESUM1],
                                        *vecs[PARAMETER_GRADIENT_SQURESUM],
H
hedaoyuan 已提交
71 72
                                        epsilon,
                                        epsilon);
H
hedaoyuan 已提交
73 74 75 76
  vecs[PARAMETER_LEARNING_RATE]->sqrt2();

  // E(dx_t^2) = \rou * E(dx_{t-1}^2) + (1-\rou) * (-g*learn_rate)^2
  vecs[PARAMETER_GRADIENT_SQURESUM1]->decayAddSquareMul(
H
hedaoyuan 已提交
77 78 79
      *vecs[PARAMETER_GRADIENT],
      *vecs[PARAMETER_LEARNING_RATE],
      rou,
H
hedaoyuan 已提交
80 81
      1.0f - rou);

H
hedaoyuan 已提交
82 83 84 85 86 87
  vecs[PARAMETER_VALUE]->sgdUpdate(*vecs[PARAMETER_GRADIENT],
                                   *vecs[PARAMETER_MOMENTUM],
                                   *vecs[PARAMETER_LEARNING_RATE],
                                   learningRate,
                                   momentum,
                                   decayRate);
H
hedaoyuan 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101
}

void RMSPropParameterOptimizer(const VectorPtr vecs[],
                               real accumulatedRou,
                               real rou,
                               real epsilon,
                               real learningRate,
                               real momentum,
                               real decayRate,
                               bool firstTime) {
  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
  // For the first time update, make the sum be the current square
  // so that the initial estimation of E(g_t^2) will not be too small.
  vecs[PARAMETER_GRADIENT_SQURESUM]->decayAddSquare(
H
hedaoyuan 已提交
102
      *vecs[PARAMETER_GRADIENT], accumulatedRou, firstTime ? 1.0f : 1.0f - rou);
H
hedaoyuan 已提交
103 104

  // E(g_t) = \rou * E(g_{t-1}) + (1-\rou) * g
H
hedaoyuan 已提交
105 106
  vecs[PARAMETER_GRADIENT_SQURESUM1]->add(
      *vecs[PARAMETER_GRADIENT], accumulatedRou, 1.0f - rou);
H
hedaoyuan 已提交
107 108 109 110 111 112 113 114 115 116

  // learn_rate = 1/sqrt( ( E(g_t^2) - (E(g_t))^2 + epsilon )
  // Basiclly if the sign of the gradient changes more often,
  // the learning rate will be decreased.
  vecs[PARAMETER_LEARNING_RATE]->assign(*vecs[PARAMETER_GRADIENT_SQURESUM]);
  vecs[PARAMETER_LEARNING_RATE]->addSquare(*vecs[PARAMETER_GRADIENT_SQURESUM1],
                                           -1.0f);
  vecs[PARAMETER_LEARNING_RATE]->add(epsilon);
  vecs[PARAMETER_LEARNING_RATE]->invSqrt(*vecs[PARAMETER_LEARNING_RATE]);

H
hedaoyuan 已提交
117 118 119 120 121 122
  vecs[PARAMETER_VALUE]->sgdUpdate(*vecs[PARAMETER_GRADIENT],
                                   *vecs[PARAMETER_MOMENTUM],
                                   *vecs[PARAMETER_LEARNING_RATE],
                                   learningRate,
                                   momentum,
                                   decayRate);
H
hedaoyuan 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136
}

void DecayedAdagradParameterOptimizer(const VectorPtr vecs[],
                                      real accumulatedRou,
                                      real rou,
                                      real epsilon,
                                      real learningRate,
                                      real momentum,
                                      real decayRate,
                                      bool firstTime) {
  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
  // For the first time update, make the sum be the current square
  // so that the initial estimation of E(g_t^2) will not be too small.
  vecs[PARAMETER_GRADIENT_SQURESUM]->decayAddSquare(
H
hedaoyuan 已提交
137
      *vecs[PARAMETER_GRADIENT], accumulatedRou, firstTime ? 1.0f : 1.0f - rou);
H
hedaoyuan 已提交
138 139 140 141 142 143 144 145

  // learn_rate = 1/sqrt( ( E(g_t^2) + epsilon )
  // Basiclly if the bigger the magnitude gradient is,
  // the smaller the learning rate will be.
  vecs[PARAMETER_LEARNING_RATE]->assign(epsilon);
  vecs[PARAMETER_LEARNING_RATE]->add(*vecs[PARAMETER_GRADIENT_SQURESUM]);
  vecs[PARAMETER_LEARNING_RATE]->invSqrt(*vecs[PARAMETER_LEARNING_RATE]);

H
hedaoyuan 已提交
146 147 148 149 150 151
  vecs[PARAMETER_VALUE]->sgdUpdate(*vecs[PARAMETER_GRADIENT],
                                   *vecs[PARAMETER_MOMENTUM],
                                   *vecs[PARAMETER_LEARNING_RATE],
                                   learningRate,
                                   momentum,
                                   decayRate);
H
hedaoyuan 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

void AdamParameterOptimizer(const VectorPtr vecs[],
                            real beta1,
                            real beta2,
                            real beta1_power,
                            real beta2_power,
                            real epsilon,
                            real learningRate) {
  Vector* m = vecs[PARAMETER_MOMENTUM].get();
  Vector* g = vecs[PARAMETER_GRADIENT].get();
  Vector* v = vecs[PARAMETER_SECOND_MOMENTUM].get();
  Vector* theta = vecs[PARAMETER_VALUE].get();

  // m_t = \beta_1 * m_{t-1} + (1-\beta_1)* g_t;
  m->add(*g, beta1, 1 - beta1);

  // v_t = \beta_2 * v_{t-1} + (1-\beta_2)* g_{t-1}^2
  g->square2();
  v->add(*g, beta2, 1 - beta2);

  // tmp = m_t / ( \sqrt{v_t} + \epsilon )
  // \theta_t = \theta_{t-1} - \alpha * \sqrt(1-\beta_2^t) / (1-\beta_1^t) * tmp
  g->sqrt2(*v);
  g->dotDiv(*m, *g, 0., epsilon);
H
hedaoyuan 已提交
177 178
  real alpha =
      learningRate * std::sqrt((real)1 - beta2_power) / ((real)1 - beta1_power);
H
hedaoyuan 已提交
179 180 181
  theta->add(*theta, 1.0, *g, -alpha);
}

H
hedaoyuan 已提交
182 183
void AdamaxParameterOptimizer(
    const VectorPtr vecs[], real beta1, real beta2, int64_t step, real alpha) {
H
hedaoyuan 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  Vector* m = vecs[PARAMETER_MOMENTUM].get();
  Vector* g = vecs[PARAMETER_GRADIENT].get();
  Vector* u = vecs[PARAMETER_WEIGHTED_INFINITY_NORM].get();
  Vector* theta = vecs[PARAMETER_VALUE].get();

  // m_t = \beta_1 * m_{t-1} + (1-\beta_1)* g_t;
  m->add(*g, beta1, 1 - beta1);

  // u_t = max(\beta_2*u_{t-1}, abs(g_t))
  u->mulScalar(beta2);
  g->abs2();
  u->max2(*u, *g);

  // \theta_t = \theta_{t-1} - (\alpha/(1-\beta_1^t))*m_t/u_t
  g->dotDiv(*m, *u);
  real learningRate = alpha / (1 - std::pow(beta1, step));
  theta->add(*theta, 1.0, *g, -learningRate);
}