sequence_recurrent_group.py 2.2 KB
Newer Older
1
#  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
Y
ying 已提交
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *

######################## data source ################################
X
Xin Pan 已提交
17
dict_path = 'legacy/gserver/tests/Sequence/tour_dict_phrase.dict'
18 19 20 21 22
dict_file = dict()
for line_count, line in enumerate(open(dict_path, "r")):
    dict_file[line.strip()] = line_count

define_py_data_sources2(
X
Xin Pan 已提交
23
    train_list='legacy/gserver/tests/Sequence/train.list',
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    test_list=None,
    module='sequenceGen',
    obj='process',
    args={"dict_file": dict_file})

settings(batch_size=5)
######################## network configure ################################
dict_dim = len(open(dict_path, 'r').readlines())
word_dim = 128
hidden_dim = 128
label_dim = 3

# This config is designed to be equivalent with sequence_recurrent.py

data = data_layer(name="word", size=dict_dim)

emb = embedding_layer(
    input=data, size=word_dim, param_attr=ParamAttr(name="emb"))


def step(y):
    mem = memory(name="rnn_state", size=hidden_dim)
    with mixed_layer(
            name="rnn_state",
            size=hidden_dim,
            bias_attr=False,
            act=SoftmaxActivation()) as out:
        out += identity_projection(input=y)
        out += full_matrix_projection(
            input=mem, param_attr=ParamAttr(name="___recurrent_layer_0__"))
    return out


recurrent = recurrent_group(name="rnn", step=step, input=emb)

recurrent_last = last_seq(input=recurrent)

with mixed_layer(
        size=label_dim, act=SoftmaxActivation(), bias_attr=True) as output:
    output += full_matrix_projection(input=recurrent_last)

outputs(
    classification_cost(
        input=output, label=data_layer(
            name="label", size=1)))