mkldnn_simple_net.conf 1.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

settings(batch_size=16)
18
channels = get_config_arg("channels", int, 2)
19

20
data = data_layer(name ="input", size=channels*16*16)
21

22 23
tmp = img_conv_layer(input=data,
            num_channels=channels,
24
            filter_size=3,
25
            num_filters=channels,
26 27 28 29
            padding=1,
            shared_biases=True,
            act=ReluActivation())

30 31 32 33 34
tmp = img_pool_layer(input=tmp,
            pool_size=3,
            stride=1,
            padding=0,
            pool_type=AvgPooling())
35

36
tmp = img_conv_layer(input=tmp,
37
            filter_size=3,
38
            num_filters=channels,
39 40
            padding=1,
            shared_biases=True,
41 42
            act=LinearActivation(),
            bias_attr=False)
43

44 45 46
tmp = batch_norm_layer(input=tmp,
            use_global_stats=False,
            act=ReluActivation())
47

48 49 50 51 52
tmp = img_pool_layer(input=tmp,
            pool_size=3,
            stride=2,
            padding=1,
            pool_type=MaxPooling())
53

54 55
tmp = img_cmrnorm_layer(input=tmp, size=5, scale=0.0001, power=0.75)

56 57 58 59
tmp = fc_layer(input=tmp,
            size=channels,
            bias_attr=False,
            act=ReluActivation())
60

61 62 63 64
out = fc_layer(input=tmp,
            size=10,
            bias_attr=True,
            act=SoftmaxActivation())
65

66
outputs(out)