SequenceConcatLayer.cpp 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
X
Xin Pan 已提交
16
#include "paddle/legacy/math/Matrix.h"
X
Xin Pan 已提交
17 18
#include "paddle/legacy/utils/Logging.h"
#include "paddle/legacy/utils/Stat.h"
Z
zhangjinchao01 已提交
19 20 21 22 23

namespace paddle {

/**
 * A layer for concatenating the first sequence with the second sequence
24 25 26
 * Input: two sequences each containing the same number of instances
 *        seq1 = [a1, a2, ..., an]
 *        seq2 = [b1, b2, ..., bn]
Z
zhangjinchao01 已提交
27
 * Output: a concatenated sequence of the two input sequences
28
 *        out = [a1, b1, a2, b2, ..., an, bn]
Z
zhangjinchao01 已提交
29 30 31
 */

class SequenceConcatLayer : public Layer {
W
Wu Yi 已提交
32
 protected:
Z
zhangjinchao01 已提交
33 34
  std::unique_ptr<Weight> biases_;

W
Wu Yi 已提交
35
 public:
Z
zhangjinchao01 已提交
36 37 38 39
  explicit SequenceConcatLayer(const LayerConfig& config) : Layer(config) {}

  ~SequenceConcatLayer() {}

Y
Yu Yang 已提交
40 41
  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;
Z
zhangjinchao01 已提交
42

Y
Yu Yang 已提交
43 44
  void forward(PassType passType) override;
  void backward(const UpdateCallback& callback = nullptr) override;
Z
zhangjinchao01 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
};

REGISTER_LAYER(seqconcat, SequenceConcatLayer);

bool SequenceConcatLayer::init(const LayerMap& layerMap,
                               const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  // sequene concatenation layer should have exactly 2 inputs
  CHECK_EQ(2U, inputLayers_.size());

  /* initialize biases_ */
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
  }

  setNeedSequenceInfo(false);
  return true;
}

void SequenceConcatLayer::forward(PassType passType) {
  Layer::forward(passType);

  size_t dim = getSize();

  const Argument& input1 = getInput(0);
  size_t numSequences1 = input1.getNumSequences();
73
  auto startPositions1 = input1.sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
74 75 76

  const Argument& input2 = getInput(1);
  size_t numSequences2 = input2.getNumSequences();
77
  auto startPositions2 = input2.sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

  CHECK_EQ(dim, input1.value->getWidth());
  CHECK_EQ(startPositions1->getData()[numSequences1], input1.getBatchSize());
  CHECK_EQ(numSequences1, startPositions1->getSize() - 1);

  CHECK_EQ(dim, input2.value->getWidth());
  CHECK_EQ(startPositions2->getData()[numSequences2], input2.getBatchSize());
  CHECK_EQ(numSequences2, startPositions2->getSize() - 1);

  CHECK_EQ(numSequences1, numSequences2);

  MatrixPtr inputValue1 = getInputValue(0);
  MatrixPtr inputValue2 = getInputValue(1);

  // reset output
  reserveOutput(inputValue1->getHeight() + inputValue2->getHeight(), dim);

  MatrixPtr outputValue = getOutputValue();

  const int* starts1 = startPositions1->getData();
  const int* starts2 = startPositions2->getData();

  {
    AsyncGpuBlock asyncGpuBlock;
    REGISTER_TIMER_INFO("SequenceConcatLayerForward", getName().c_str());

    size_t offset = 0;
    size_t leftNumIns = 0;
    size_t rightNumIns = 0;
    for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
      leftNumIns = starts1[seqId + 1] - starts1[seqId];
      outputValue->subMatrix(offset, leftNumIns)
          ->assign(*(inputValue1->subMatrix(starts1[seqId], leftNumIns)));
      offset += leftNumIns;

      rightNumIns = starts2[seqId + 1] - starts2[seqId];
      outputValue->subMatrix(offset, rightNumIns)
          ->assign(*(inputValue2->subMatrix(starts2[seqId], rightNumIns)));
      offset += rightNumIns;
    }

    // modify the sequenceStartPositions
120 121
    ICpuGpuVector::resizeOrCreate(
        output_.sequenceStartPositions, numSequences1 + 1, false);
Z
zhangjinchao01 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

    int* tgtBuf = output_.sequenceStartPositions->getMutableData(false);

    for (size_t seqId = 0; seqId < numSequences1 + 1; ++seqId) {
      tgtBuf[seqId] = starts1[seqId] + starts2[seqId];
    }
  }

  if (biases_.get() != NULL) {
    MatrixPtr outV = getOutputValue();
    outV->addBias(*(biases_->getW()), 1);
  }

  /* activation */
  forwardActivation();
}

void SequenceConcatLayer::backward(const UpdateCallback& callback) {
  /* activation */
  backwardActivation();

  if (biases_ && biases_->getWGrad()) {
    biases_->getWGrad()->collectBias(*getOutputGrad(), 1);

    // Increasing the number of gradient
    biases_->getParameterPtr()->incUpdate(callback);
  }

  MatrixPtr inputGrad1 = getInputGrad(0);
  MatrixPtr inputGrad2 = getInputGrad(1);
  MatrixPtr outputGrad = getOutputGrad();
153 154
  auto startPositions1 = getInput(0).sequenceStartPositions->getVector(false);
  auto startPositions2 = getInput(1).sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

  size_t numSequences1 = startPositions1->getSize() - 1;
  size_t numSequences2 = startPositions2->getSize() - 1;

  CHECK_EQ(numSequences1, numSequences2);

  const int* starts1 = startPositions1->getData();
  const int* starts2 = startPositions2->getData();

  {
    AsyncGpuBlock asyncGpuBlock;
    REGISTER_TIMER_INFO("SequenceConcatLayerBackward", getName().c_str());

    size_t offset = 0;
    size_t leftNumIns = 0;
    size_t rightNumIns = 0;
    for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
      leftNumIns = starts1[seqId + 1] - starts1[seqId];
173 174 175 176
      if (inputGrad1) {
        inputGrad1->subMatrix(starts1[seqId], leftNumIns)
            ->add(*(outputGrad->subMatrix(offset, leftNumIns)));
      }
Z
zhangjinchao01 已提交
177 178 179
      offset += leftNumIns;

      rightNumIns = starts2[seqId + 1] - starts2[seqId];
180 181 182 183
      if (inputGrad2) {
        inputGrad2->subMatrix(starts2[seqId], rightNumIns)
            ->add(*(outputGrad->subMatrix(offset, rightNumIns)));
      }
Z
zhangjinchao01 已提交
184 185 186 187 188 189
      offset += rightNumIns;
    }
  }
}

}  // namespace paddle