RowL2NormLayer.cpp 3.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"

namespace paddle {

/**
 * A layer for L2 normalization in each row,
 * \f[
 *   out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}
 * \f]
 * where the size of \f$in\f$ is (batchSize x dataDim),
 * and the size of \f$out\f$ is (batchSize x dataDim).
 */

class RowL2NormLayer : public Layer {
W
Wu Yi 已提交
29
 protected:
G
guosheng 已提交
30
  MatrixPtr inSquare_;
31
  MatrixPtr l2NormReciprocal_;
G
guosheng 已提交
32 33
  MatrixPtr dotSum_;

W
Wu Yi 已提交
34
 public:
G
guosheng 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  explicit RowL2NormLayer(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;

  void forward(PassType passType) override;
  void backward(const UpdateCallback& callback = nullptr) override;
};

REGISTER_LAYER(row_l2_norm, RowL2NormLayer);

bool RowL2NormLayer::init(const LayerMap& layerMap,
                          const ParameterMap& parameterMap) {
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(inputLayers_.size(), 1U);

  return true;
}

void RowL2NormLayer::forward(PassType passType) {
  Layer::forward(passType);

  MatrixPtr inV = getInputValue(0);

  /* malloc memory for the output_ if necessary */
  size_t batchSize = inV->getHeight();
  size_t dataDim = getSize();
  CHECK_EQ(dataDim, inV->getWidth());
  resetOutput(batchSize, dataDim);
  MatrixPtr outV = getOutputValue();

  Matrix::resizeOrCreate(inSquare_, batchSize, dataDim, false, useGpu_);
  inV->square2(*inSquare_);
69 70 71 72 73
  Matrix::resizeOrCreate(l2NormReciprocal_, batchSize, 1, false, useGpu_);
  inSquare_->rowSum(*l2NormReciprocal_);
  l2NormReciprocal_->sqrt2(*l2NormReciprocal_);
  l2NormReciprocal_->scalarDiv(*l2NormReciprocal_, 1.0);
  outV->rowScale(0, *inV, *l2NormReciprocal_);
G
guosheng 已提交
74 75 76 77 78 79 80 81 82
}

void RowL2NormLayer::backward(const UpdateCallback& callback) {
  MatrixPtr inV = getInputValue(0);
  MatrixPtr inG = getInputGrad(0);
  MatrixPtr outV = getOutputValue();
  MatrixPtr outG = getOutputGrad();
  size_t batchSize = inV->getHeight();

83 84 85
  // inG[ij] += outG[ij] / l2NormReciprocal
  // inG[ij] += -inV[ij] * l2NormReciprocal * l2NormReciprocal * DotMul(outG[i],
  // inV[i])
G
guosheng 已提交
86 87 88 89
  if (inG) {
    Matrix::resizeOrCreate(dotSum_, batchSize, 1, false, useGpu_);
    dotSum_->zeroMem();
    dotSum_->rowDotMul(0, *outG, *outV);
90 91
    dotSum_->dotMul(*dotSum_, *l2NormReciprocal_);
    dotSum_->dotMul(*dotSum_, *l2NormReciprocal_);
G
guosheng 已提交
92 93
    inSquare_->rowScale(0, *inV, *dotSum_);
    inG->sub(*inSquare_);
94
    inG->addRowScale(0, *outG, *l2NormReciprocal_);
G
guosheng 已提交
95 96 97 98
  }
}

}  // namespace paddle