GatedRecurrentLayer.h 3.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "GruCompute.h"
#include "Layer.h"
Y
Yu Yang 已提交
19
#include "SequenceToBatch.h"
X
Xin Pan 已提交
20
#include "paddle/legacy/math/Matrix.h"
Z
zhangjinchao01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

namespace paddle {

/**
 * @brief Please refer to "Junyoung Chung, Empirical Evaluation
 * of Gated Recurrent Neural Networks on Sequence Modeling".
 *
 * GatedRecurrentLayer takes 1 input layer with size * 3.
 * Input layer is diveded into 3 equal parts: (xz_t, xr_t, xi_t).
 * parameter and biasParameter is also diveded into 3 equal parts:
 *   - parameter consists of (U_z, U_r, U)
 *   - baisParameter consists of (bias_z, bias_r, bias_o)
 *
 * \f[
 * update \ gate: z_t = actGate(xz_t + U_z * h_{t-1} + bias_z) \\
 * reset \ gate: r_t = actGate(xr_t + U_r * h_{t-1} + bias_r) \\
 * output \ candidate: {h}_t = actNode(xi_t + U * dot(r_t, h_{t-1}) + bias_o) \\
 * hidden \ activation: h_t = dot((1-z_t), h_{t-1}) + dot(z_t, {h}_t) \\
 * \f]
 *
 * @note
 * - dot denotes "element-wise multiplication".
 * - actNode is defined by config active_type
 * - actGate is defined by config actvie_gate_type
 *
 * The config file is grumemory.
 */

class GatedRecurrentLayer : public Layer, public GruCompute {
W
Wu Yi 已提交
50
 public:
Z
zhangjinchao01 已提交
51 52
  explicit GatedRecurrentLayer(const LayerConfig& config) : Layer(config) {}

Y
Yu Yang 已提交
53 54
  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;
Z
zhangjinchao01 已提交
55

Y
Yu Yang 已提交
56
  void forward(PassType passType) override;
Z
zhangjinchao01 已提交
57

Y
Yu Yang 已提交
58
  void backward(const UpdateCallback& callback) override;
Z
zhangjinchao01 已提交
59

Y
Yu Yang 已提交
60
  void resetState() override;
Z
zhangjinchao01 已提交
61

Y
Yu Yang 已提交
62
  void setState(LayerStatePtr state) override;
Z
zhangjinchao01 已提交
63

Y
Yu Yang 已提交
64
  LayerStatePtr getState() override;
Z
zhangjinchao01 已提交
65

W
Wu Yi 已提交
66
 protected:
67 68 69 70 71 72 73 74 75 76 77 78 79
  void forwardSequence(int batchSize,
                       size_t numSequences,
                       const int* starts,
                       MatrixPtr inputValue);
  void backwardSequence(int batchSize,
                        size_t numSequences,
                        const int* starts,
                        MatrixPtr inputGrad);

  void forwardBatch(int batchSize,
                    size_t numSequences,
                    const int* starts,
                    MatrixPtr inputValue);
Z
zhangjinchao01 已提交
80 81
  void backwardBatch(int batchSize, MatrixPtr inputGrad);

W
Wu Yi 已提交
82
 protected:
Z
zhangjinchao01 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  std::unique_ptr<Weight> weight_;
  std::unique_ptr<Weight> gateWeight_;
  std::unique_ptr<Weight> stateWeight_;
  std::unique_ptr<Weight> bias_;

  Argument gate_;
  Argument resetOutput_;

  bool reversed_;
  bool useBatch_;
  std::unique_ptr<SequenceToBatch> batchValue_;
  std::unique_ptr<SequenceToBatch> batchGrad_;
  std::unique_ptr<ActivationFunction> activationGate_;

  MatrixPtr prevOutput_;
};

}  // namespace paddle