ConvTransOperator.cpp 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ConvTransOperator.h"
X
Xin Pan 已提交
16 17
#include "paddle/legacy/math/MathUtils.h"
#include "paddle/legacy/math/Matrix.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31

namespace paddle {

/**
 * @brief ConvTransOperator takes two inputs to perform the convolution.
 * The first input is the image, and the second input is the convolution kernel.
 * The height of data for two inputs are the same. Each data of the first input
 * is convolved with each data of the second input indepedently.
 *
 * The config file api is conv_operator.
 */

REGISTER_OPERATOR(convt, ConvTransOperator);

W
wangyang59 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
void ConvTransOperator::reshape(int batchSize) {
  outputH_ = ins_[0]->getFrameHeight();
  outputW_ = ins_[0]->getFrameWidth();
  if (outputH_ == 0) outputH_ = outputY_;
  if (outputW_ == 0) outputW_ = outputX_;
  imageH_ = imageSize(outputH_, filterSizeY_, paddingY_, strideY_, caffeMode_);
  imageW_ = imageSize(outputW_, filterSize_, padding_, stride_, caffeMode_);
  /// Check that the imageSizes are consistent with config
  CHECK_EQ(imageH_, imgSizeY_);
  CHECK_EQ(imageW_, imgSize_);
  out_->setFrameHeight(imageH_);
  out_->setFrameWidth(imageW_);

  reshapeImageDescriptors();

  inputOffset_ = numFilters_ * outputH_ * outputW_;
  outputOffset_ = channels_ * imageH_ * imageW_;
  weightOffset_ = numFilters_ * channels_ * filterSize_ * filterSizeY_;

  if (!isSelectAlgo_) {
    allocConvWorkSpace();
  }

  isSelectAlgo_ = true;
}

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
void ConvTransOperator::forward() {
  size_t batchSize = ins_[0]->value->getHeight();
  reshape(batchSize);
  CHECK_EQ(ins_[1]->value->getHeight(), batchSize);
  checkFilterSize(ins_[1]->value);
  Matrix::resizeOrCreate(
      out_->value, batchSize, imageH_ * imageW_ * channels_, false, useGpu_);
  {
    AsyncGpuBlock block;
    for (size_t batchId = 0; batchId < batchSize; ++batchId) {
      real *inputData = ins_[0]->value->getData() + inputOffset_ * batchId;
      real *wgtData = ins_[1]->value->getData() + weightOffset_ * batchId;
      real *outData = out_->value->getData() + outputOffset_ * batchId;
      hl_convolution_backward_data(imageDesc_,
                                   outData,
                                   outputDesc_,
                                   inputData,
                                   filterDesc_,
                                   wgtData,
                                   convDesc_,
                                   workSpace_,
                                   workSpaceInBytes_,
                                   bwdDataAlgo_);
    }
  }
}

void ConvTransOperator::backward() {
  size_t batchSize = ins_[0]->value->getHeight();
  {
    AsyncGpuBlock block;
    for (size_t batchId = 0; batchId < batchSize; ++batchId) {
      real *outGrad = out_->grad->getData() + outputOffset_ * batchId;
      if (ins_[1]->grad) {
        real *inputData = ins_[0]->value->getData() + inputOffset_ * batchId;
        real *weightGrad = ins_[1]->grad->getData() + weightOffset_ * batchId;
        hl_convolution_backward_filter(imageDesc_,
                                       outGrad,
                                       outputDesc_,
                                       inputData,
                                       filterDesc_,
                                       weightGrad,
                                       convDesc_,
                                       workSpace_,
                                       workSpaceInBytes_,
                                       bwdFilterAlgo_);
      }

      MatrixPtr preGrad = ins_[0]->grad;
      if (NULL != preGrad) {
        real *inputGrad = preGrad->getData() + inputOffset_ * batchId;
        real *wgtData = ins_[1]->value->getData() + weightOffset_ * batchId;
        hl_convolution_forward(imageDesc_,
                               outGrad,
                               outputDesc_,
                               inputGrad,
                               filterDesc_,
                               wgtData,
                               convDesc_,
                               workSpace_,
                               workSpaceInBytes_,
                               fwdAlgo_);
      }
    }
  }
}

}  // namespace paddle