utils.py 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import ast
18
import astor
19 20
import atexit
import copy
21
import collections
22 23 24 25 26
import gast
import inspect
import os
import six
import tempfile
27
import textwrap
28
import numpy as np
29

30 31
from paddle.fluid import unique_name

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

class BaseNodeVisitor(gast.NodeVisitor):
    """
    Implement customized NodeVisitor inherited from gast.NodeVisitor. 
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


54 55 56 57 58 59
# imp is deprecated in python3
if six.PY2:
    import imp
else:
    from importlib.machinery import SourceFileLoader

60 61 62 63 64 65 66 67 68 69
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

70
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
71
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
72
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
# FullArgSpec is valid from Python3. Defined a Namedtuple to
# to make it available in Python2.
FullArgSpec = collections.namedtuple('FullArgSpec', [
    'args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults',
    'annotations'
])


def getfullargspec(target):
    if hasattr(inspect, "getfullargspec"):
        return inspect.getfullargspec(target)
    else:
        argspec = inspect.getargspec(target)
        return FullArgSpec(
            args=argspec.args,
            varargs=argspec.varargs,
            varkw=argspec.keywords,
            defaults=argspec.defaults,
            kwonlyargs=[],
            kwonlydefaults=None,
            annotations={})


def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
    fullargspec = getfullargspec(function)
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
        default_kwarg_names = arg_names[-len(default_values):]
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
117 118 119 120 121 122 123 124 125
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
    fullargspec = getfullargspec(function)
    varargs = fullargspec.varargs
    return varargs


126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

    For some unhashable objects, such as `dict/list/np.ndarray`,applying hash function by using their values.
    """
    if isinstance(x, (tuple, list)):
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

154

155 156 157 158 159 160 161
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
162 163 164 165 166 167 168 169

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
170
    try:
171 172 173 174 175
        # TODO(liym27):
        #  Consider a better to import modules like:
        #  source_file = inspect.getfile(dyfunc)
        #  import_statements = ImportVisitor(source_file).transform()
        #  import_str = "".join(import_statements)
176
        import paddle
L
liym27 已提交
177
        import paddle.fluid as fluid
178
        import paddle.fluid.dygraph as dygraph
L
liym27 已提交
179
        import paddle.fluid.layers as layers
180

181
        from paddle.fluid.dygraph import to_variable
182 183
        from paddle import to_tensor

184 185 186 187 188 189 190
        return eval("_is_api_in_module_helper({}, '{}')".format(func_str,
                                                                module_prefix))
    except NameError:
        return False


def is_dygraph_api(node):
191

192 193 194 195
    # Note: A api in module dygraph_to_static is not a real dygraph api.
    if is_api_in_module(node, "paddle.fluid.dygraph.dygraph_to_static"):
        return False

196 197
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
198 199 200 201
    return is_api_in_module(node, "paddle.fluid.dygraph")


def is_paddle_api(node):
202
    return is_api_in_module(node, "paddle")
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
        import numpy as np
        module_result = eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, "numpy"))
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
        if not module_result:
            return func_str.startswith("numpy.") or func_str.startswith("np.")
    except NameError:
        return False


L
liym27 已提交
221 222 223
def is_control_flow_to_transform(node,
                                 static_analysis_visitor=None,
                                 var_name_to_type=None):
224
    """
L
liym27 已提交
225 226
    Determines whether the node is a PaddlePaddle control flow statement which needs to
    be transformed into a static graph control flow statement.
227 228 229
    """
    assert isinstance(node, gast.AST), \
        "The type of input node must be gast.AST, but received %s." % type(node)
L
liym27 已提交
230 231 232 233
    visitor = IsControlFlowVisitor(
        node, static_analysis_visitor, node_var_type_map=var_name_to_type)
    need_to_transform = visitor.transform()
    return need_to_transform
234 235


236 237
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
238
    func_src = astor.to_source(gast.gast_to_ast(node.func))
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    import paddle.fluid as fluid
    full_args = eval("inspect.getargspec({})".format(func_src))
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
        raise NotImplementedError("Paddle dygraph API {} cannot be converted "
                                  "to static graph at present.".format(
                                      dygraph_class))


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
            gast.keyword(
                arg="num_flatten_dims",
                value=gast.Constant(
                    value=-1, kind=None)))

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

    node.func = gast.Attribute(
        attr=static_api,
        ctx=gast.Load(),
        value=gast.Attribute(
            attr='layers',
            ctx=gast.Load(),
            value=gast.Name(
                ctx=gast.Load(), id='fluid', annotation=None,
                type_comment=None)))

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

315
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    import paddle.fluid as fluid
    if method_name == "__init__" or eval(
            "issubclass({}, fluid.dygraph.Layer)".format(class_src)):
        full_args = eval("inspect.getargspec({}.{})".format(class_src,
                                                            method_name))
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
332 333 334


def create_api_shape_node(tensor_shape_node):
335 336 337 338 339 340 341 342 343
    assert isinstance(tensor_shape_node,
                      (gast.Name, gast.Attribute, gast.Subscript))

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
            func=gast.parse('fluid.layers.shape').body[0].value,
            args=[tensor_shape_node],
            keywords=[])
        return api_shape_node
344 345 346 347 348 349 350 351 352 353 354 355

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
            func=gast.parse('fluid.layers.shape').body[0].value,
            args=[tensor_shape_node.value],
            keywords=[])
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
356 357


358 359 360 361 362 363 364 365 366 367 368 369
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
    return gast.parse('%s = fluid.layers.fill_constant(%s, "%s", %s)' %
                      (name, str(shape), dtype, str(value)))


def get_attribute_full_name(node):
    assert isinstance(
        node,
        gast.Attribute), "Input non-Attribute node to get attribute full name"
    return astor.to_source(gast.gast_to_ast(node)).strip()


370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
def generate_name_node(name_ids, ctx=gast.Load()):
    """
    Generate list or gast.Tuple of ast.Name for Return statement.
    """
    if isinstance(name_ids, six.string_types):
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
        raise TypeError('name_ids must be list or tuple or set, but received %s'
                        % type(type(name_ids)))
    gast_names = [
        gast.Name(
            id=name_id, ctx=ctx, annotation=None, type_comment=None)
        for name_id in name_ids
    ]
    if len(gast_names) == 1:
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
398 399
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
400 401
    else:
        nodes.append(gast.Return(value=None))
402 403 404 405 406 407 408 409 410 411
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None)
    return func_def_node


412 413 414 415 416 417 418 419
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


class RenameTransformer(gast.NodeTransformer):
    def __init__(self, node):
        assert isinstance(
            node, gast.AST), "RenameTransformer only accepts gast.AST as input"
        self.root = node
        self.old_name = ""
        self.new_name = ""

    def rename(self, old_name, new_name):
        self.old_name = old_name
        self.new_name = new_name
        self.visit(self.root)

    def visit_Name(self, node):
        self.generic_visit(node)
        if node.id == self.old_name:
            node.id = self.new_name
        return node

    def visit_Attribute(self, node):
        self.generic_visit(node)
        attr_full_name = get_attribute_full_name(node)
        if attr_full_name == self.old_name:
            new_name_node = gast.parse(self.new_name).body[0].value
            return new_name_node
        return node


457
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
458 459
    """
    Transform modified AST of decorated function into python callable object.
460 461
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
462
    """
463

464
    def remove_if_exit(filepath):
465 466 467
        if os.path.exists(filepath):
            os.remove(filepath)

468
    source = ast_to_source_code(ast_root)
469
    import_fluid = "import paddle\nimport paddle.fluid as fluid\n"
470
    source = import_fluid + source
471

472 473 474 475 476 477 478 479 480 481 482
    if six.PY2:
        source = source.encode('utf-8')
        f = tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False)
    else:
        f = tempfile.NamedTemporaryFile(
            mode='w', suffix='.py', delete=False, encoding='utf-8')
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

    if delete_on_exit:
483 484
        atexit.register(lambda: remove_if_exit(f.name))
        atexit.register(lambda: remove_if_exit(f.name[:-3] + ".pyc"))
485

486 487 488 489
    if six.PY2:
        module = imp.load_source(module_name, f.name)
    else:
        module = SourceFileLoader(module_name, f.name).load_module()
490
    func_name = dyfunc.__name__
W
WeiXin 已提交
491 492 493 494 495 496 497 498
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
499 500 501
        raise ValueError(
            'Function: %s doesn\'t exist in the Module transformed from AST.' %
            func_name)
502 503 504 505 506 507 508 509 510 511 512 513 514
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
515

516
    for k, v in six.iteritems(src_globals):
517 518 519
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
520 521


522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
            "The type of 'function' should be a function or method, but received {}.".
            format(type(function).__name__))
    source_code = inspect.getsource(function)
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


537 538
def ast_to_source_code(ast_node):
    """
539
    Transforms ast node into source code.
540 541 542 543 544 545 546 547 548
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
            "Type of ast_root should be gast.AST or ast.AST, but received %s." %
            type(ast_node))
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
    source_code = astor.to_source(ast_node)
    return source_code
L
liym27 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
    is_compare_node = isinstance(node, (gast.Compare, gast.BoolOp, gast.UnaryOp,
                                        gast.For, gast.If, gast.While))
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
            if (isinstance(child, gast.Constant) and child.value is None) or (
                    isinstance(child, gast.Name) and child.id == 'None'):
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
591
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
592
        6. calls `range` function in `for` statement and the argument of range is Tensor.
593 594
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

    def __init__(self,
                 ast_node,
                 static_analysis_visitor=None,
                 node_var_type_map=None):
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
            ast_node)
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
        self.node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
630 631 632 633 634 635 636 637
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
638 639 640 641 642 643 644 645 646
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
647 648 649 650 651 652 653 654 655 656 657 658 659 660
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
                if node.iter.func.id == "range" or node.iter.func.id == "enumerate":
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
661 662
            else:
                return
663 664 665
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
666
        else:
L
liym27 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
705
            self.visit(child)
L
liym27 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        from paddle.fluid.dygraph.dygraph_to_static.static_analysis import NodeVarType

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
            if name_id and isinstance(name_id, six.string_types):
                var_type = self.node_var_type_map.get(name_id, None)
755
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
756 757
                    return True
        # if not found, look up the node_to_wrapper_map by node.
758
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
759
        if wrapper_node is not None:
760
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
761 762 763 764 765 766
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
767 768 769 770


class NameNodeReplaceTransformer(gast.NodeTransformer):
    """
771
    This class replaces specified gast.Name node by replace_node.
772 773 774 775
    """

    def __init__(self, root_node, target_name, replace_node):
        assert isinstance(target_name, str)
776 777 778 779 780 781 782 783 784 785 786 787 788 789

        # NOTE(liym27):
        # Use gast.Name to replace gast.Name, otherwise, errors may occur.
        #
        # For examples:
        # If using a gast.Subscript to replace gast.Name, and the original gast.Name
        # is in the arguments of FunctionDef, an exception will be raised.
        #
        # ```
        # def func(x[i])) # x[i] can not be a argument
        #    # ...
        # ```

        assert isinstance(replace_node, gast.Name)
790 791 792 793 794 795 796 797 798 799 800
        self.target_name = target_name
        self.replace_node = replace_node

        self.visit(root_node)

    def visit_Name(self, node):
        if node.id == self.target_name:
            return self.replace_node
        return node


801
class ForNodeVisitor(object):
802
    """
803
    This class parses python for statement, get transformed 3 statement components of for node
804 805 806 807 808 809 810 811
    three key statements:
        1). init_stmts: list[node], prepare nodes of for loop, may not only one
        2). cond_stmt: node, condition node to judge whether continue loop
        3). body_stmts: list[node], updated loop body, sometimes we should change
            the original statement in body, not just append new statement

    In this process, the semantics of for does not change.

812
    Now only can parse 3 type statements (Here var is VarBase(Tensor) or python variable):
813 814 815
        1). for x in range(var[*]|var.numpy()[*])
        2). for x in var|var.numpy()
        3). for i, x enumerate(var|var.numpy())
816 817 818 819 820
    """

    def __init__(self, for_node):
        assert isinstance(
            for_node, gast.For
821
        ), "Input node for the initialization of ForNodeVisitor is not gast.For node."
822 823 824 825 826 827 828 829 830 831 832 833 834
        # 1. original for node
        self.node = for_node

        # 2. gast.For node main parts
        self.target = for_node.target
        # NOTE: type may be Node or list[Node]
        self.iter_args = for_node.iter if self.is_for_iter(
        ) else for_node.iter.args
        self.body = for_node.body

        # 3. key shared node or names
        # - x:
        #   - for x in range(***)
835 836
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
837 838 839
        self.iter_var_name = self._get_iter_var_name()

        # - created index var to slice Variable: __for_loop_var_index_0
840 841
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
842 843
        self.iter_idx_name = unique_name.generate(FOR_ITER_INDEX_PREFIX)

844
        # - created shape var to build loop condition: __for_loop_var_len_0
845 846 847
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
        #   - for x in var
848
        self.iter_var_len_name = unique_name.generate(FOR_ITER_VAR_LEN_PREFIX)
849

850 851 852
        # - var.numpy()/var
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
853 854 855
        self.iter_node = self._get_iter_node()

        # - enumeate i:
856
        #   - for i, x enumerate(var|var.numpy())
857 858 859 860 861 862 863 864 865 866 867 868 869 870
        self.enum_idx_name = self._get_enum_idx_name()

        # - range/enumerate args length
        self.args_length = None

    def parse(self):
        self._args_check()
        if self.is_for_range_iter():
            return self._parse_for_range_stmts()
        elif self.is_for_iter():
            return self._parse_for_stmts()
        elif self.is_for_enumerate_iter():
            return self._parse_for_enumerate_stmts()
        else:
871
            return None
872 873

    def is_for_range_iter(self):
874 875 876
        return isinstance(self.node.iter, gast.Call) and isinstance(
            self.node.iter.func,
            gast.Name) and self.node.iter.func.id == "range"
877 878

    def is_for_iter(self):
879
        if isinstance(self.node.iter, (gast.Name, gast.Attribute)):
880 881 882 883 884 885 886
            return True
        elif isinstance(self.node.iter, gast.Call) and isinstance(
                self.node.iter.func,
                gast.Attribute) and self.node.iter.func.attr == 'numpy':
            return True
        else:
            return False
887 888

    def is_for_enumerate_iter(self):
889 890 891
        return isinstance(self.node.iter, gast.Call) and isinstance(
            self.node.iter.func,
            gast.Name) and self.node.iter.func.id == "enumerate"
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

    def _args_check(self):
        if self.is_for_range_iter():
            self.args_length = len(self.iter_args)
            assert self.args_length >= 1 and self.args_length <= 3, "range() function takes 1 to 3 arguments"
        elif self.is_for_enumerate_iter():
            self.args_length = len(self.iter_args)
            assert self.args_length >= 1 and self.args_length <= 2, "enumerate() function takes 1 to 2 arguments"
        else:
            self.args_length = None

    def _parse_for_range_stmts(self):
        init_stmts = []
        init_stmts.append(self._build_index_init_node())

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
        body_stmts.append(self._build_index_increase_node(step_node))

        return init_stmts, cond_stmt, body_stmts

    def _parse_for_stmts(self):
        init_stmts = []
        init_stmts.append(self._build_index_init_node())
919
        init_stmts.append(self._build_var_len_assign_node())
920 921 922 923 924 925

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
926 927 928 929 930

        # NOTE(liym27): Here add a gast.Assign, and the target of it is gast.Name.
        # In NameNodeReplaceTransformer, using gast.Name to replace gast.Name is safe.
        target_node, assign_node = self._build_assign_var_slice_node()
        body_stmts[0:0] = [assign_node]
931 932
        for body_node in body_stmts:
            NameNodeReplaceTransformer(body_node, self.iter_var_name,
933
                                       target_node)
934 935 936 937 938 939 940
        body_stmts.append(self._build_index_increase_node(step_node))

        return init_stmts, cond_stmt, body_stmts

    def _parse_for_enumerate_stmts(self):
        init_stmts = []
        init_stmts.append(self._build_index_init_node())
941
        init_stmts.append(self._build_var_len_assign_node())
942 943 944 945 946 947 948
        init_stmts.append(self._build_enum_init_node())

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
949 950 951

        target_node, assign_node = self._build_assign_var_slice_node()
        body_stmts[0:0] = [assign_node]
952 953
        for body_node in body_stmts:
            NameNodeReplaceTransformer(body_node, self.iter_var_name,
954 955
                                       target_node)

956 957 958 959 960 961 962 963
        body_stmts.append(self._build_index_increase_node(step_node))
        body_stmts.append(self._build_enum_increase_node())

        return init_stmts, cond_stmt, body_stmts

    def _build_index_init_node(self):
        if self.is_for_range_iter():
            if self.args_length == 1:
964
                index_init_value_str = '0'
965
            else:
966 967 968 969
                index_init_value_str = ast_to_source_code(self.iter_args[
                    0]).strip()

            index_init_var_name = self.iter_var_name
970
        else:
971 972 973 974 975 976 977 978
            index_init_value_str = '0'
            index_init_var_name = self.iter_idx_name

        index_init_node_source_str = "{target} = {value}".format(
            target=index_init_var_name, value=index_init_value_str)

        index_init_node = gast.parse(index_init_node_source_str).body[0]

979 980
        return index_init_node

981 982 983 984 985 986 987
    def _build_var_len_assign_node(self):
        # get the length of iterable variable
        if isinstance(self.iter_node, gast.Call) and isinstance(
                self.iter_node.func,
                gast.Attribute) and self.iter_node.func.attr == 'numpy':
            iter_var_name = ast_to_source_code(self.iter_node.func.value).strip(
            )
988
        else:
989 990
            iter_var_name = ast_to_source_code(self.iter_node).strip()

991
        convert_len_node_source_str = '{} = paddle.jit.dy2static.convert_len({})'.format(
992 993 994 995 996
            self.iter_var_len_name, iter_var_name)

        convert_len_node = gast.parse(convert_len_node_source_str).body[0]

        return convert_len_node
997 998 999

    def _build_enum_init_node(self):
        if self.is_for_enumerate_iter() and self.args_length != 1:
1000 1001 1002 1003 1004 1005 1006
            init_value_str = ast_to_source_code(self.iter_args[1]).strip()
        else:
            init_value_str = '0'

        enum_init_node_source_str = "{} = {}".format(self.enum_idx_name,
                                                     init_value_str)
        enum_init_node = gast.parse(enum_init_node_source_str).body[0]
1007 1008 1009 1010 1011 1012 1013
        return enum_init_node

    def _build_compare_node(self):
        if self.is_for_range_iter():
            compare_node = self.iter_args[
                0] if self.args_length == 1 else self.iter_args[1]
        else:
1014 1015 1016 1017 1018
            compare_node = gast.Name(
                id=self.iter_var_len_name,
                ctx=gast.Load(),
                annotation=None,
                type_comment=None)
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        return compare_node

    def _build_step_node(self):
        if self.is_for_range_iter():
            step_node = self.iter_args[
                2] if self.args_length == 3 else gast.Constant(
                    value=1, kind=None)
        else:
            step_node = gast.Constant(value=1, kind=None)
        return step_node

    def _build_cond_stmt(self, step_node, compare_node):
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        if not isinstance(step_node, (gast.Constant, gast.UnaryOp)):
            raise NotImplementedError(
                "Dynamic-to-Static only supports the step value is a constant or negative constant in 'for-range' statements, "
                "such as '2', '-3'. But received: '{}'. Please fix code to be compatible with Dynamic-to-Static."
                .format(ast_to_source_code(step_node).strip()))

        if isinstance(step_node, gast.UnaryOp) or step_node.value < 0:
            # eg:
            # range(max, min, -2)
            # ->
            # i > min
            return gast.Compare(
1043 1044 1045 1046 1047 1048
                left=gast.Name(
                    id=self.iter_var_name
                    if self.is_for_range_iter() else self.iter_idx_name,
                    ctx=gast.Load(),
                    annotation=None,
                    type_comment=None),
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
                ops=[gast.Gt()],
                comparators=[compare_node])
        else:
            # eg:
            # range(min, max, 2)
            # ->
            # i < max
            return gast.Compare(
                left=gast.Name(
                    id=self.iter_var_name
                    if self.is_for_range_iter() else self.iter_idx_name,
                    ctx=gast.Load(),
                    annotation=None,
                    type_comment=None),
                ops=[gast.Lt()],
                comparators=[compare_node])
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

    def _build_index_increase_node(self, step_node):
        return gast.AugAssign(
            target=gast.Name(
                id=self.iter_var_name
                if self.is_for_range_iter() else self.iter_idx_name,
                ctx=gast.Store(),
                annotation=None,
                type_comment=None),
            op=gast.Add(),
            value=step_node)

1077 1078
    def _build_assign_var_slice_node(self):
        var_slice_node = gast.Subscript(
1079 1080 1081 1082 1083 1084
            value=self.iter_node,
            slice=gast.Index(value=gast.Name(
                id=self.iter_idx_name,
                ctx=gast.Load(),
                annotation=None,
                type_comment=None)),
1085 1086 1087 1088 1089
            ctx=gast.Load(), )
        new_iter_var_name = unique_name.generate(FOR_ITER_VAR_NAME_PREFIX)
        target_node, assign_node = create_assign_node(new_iter_var_name,
                                                      var_slice_node)
        return target_node, assign_node
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

    def _build_enum_increase_node(self):
        return gast.AugAssign(
            target=gast.Name(
                id=self.enum_idx_name,
                ctx=gast.Store(),
                annotation=None,
                type_comment=None),
            op=gast.Add(),
            value=gast.Constant(
                value=1, kind=None))

    def _get_iter_var_name(self):
        if self.is_for_range_iter():
            return self.target.id
        elif self.is_for_iter():
            return self.target.id
        elif self.is_for_enumerate_iter():
            return self.target.elts[1].id
        return None

    def _get_iter_node(self):
        if self.is_for_iter():
            return self.iter_args
        elif self.is_for_enumerate_iter():
            return self.iter_args[0]
        return None

    def _get_enum_idx_name(self):
        if self.is_for_enumerate_iter():
            return self.target.elts[0].id
        return None
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203


class SplitAssignTransformer(gast.NodeTransformer):
    """
    This class transforms sequence assignments and multi-target assignments to normal assignments.
    """

    def __init__(self, ast_node):
        assert isinstance(ast_node, gast.AST)
        self.ast_root = ast_node

    def transform(self):
        self.visit(self.ast_root)

    def visit_Assign(self, node):
        target_nodes = node.targets
        if len(target_nodes) == 1:
            node = self._parse_sequence_assign(node)
        else:
            node = self._parse_multi_target_assign(node)
        return node

    def _parse_sequence_assign(self, node):
        """
        a, b = c, d
        ->
        a = c
        b = d
        """
        assert isinstance(node, gast.Assign)

        target_nodes = node.targets
        value_node = node.value
        if not isinstance(target_nodes[0], (gast.List, gast.Tuple)):
            return node
        if not isinstance(value_node, (gast.List, gast.Tuple)):
            return node

        targets = node.targets[0].elts
        values = node.value.elts
        if len(targets) != len(values):
            return node

        new_nodes = []
        for target, value in zip(targets, values):
            assign_node = gast.Assign(targets=[target], value=value)
            new_nodes.append(assign_node)

        return new_nodes

    def _parse_multi_target_assign(self, node):
        """
         Example 1:
         a = b = c
         ->
         b = c
         a = b

         Example 2:
         a, b = c, d = x
         ->
         c,d = x
         a = c
         b = d
         """
        assert isinstance(node, gast.Assign)

        target_nodes = node.targets
        value_node = node.value
        new_nodes = []
        for target in reversed(target_nodes):
            assign_node = gast.Assign(targets=[target], value=value_node)
            # NOTE: Because assign_node can be sequence assign statement like `a,b = c,d`,
            # it's necessary to visit this new assign_node
            parsed_node = self.visit_Assign(assign_node)
            if not isinstance(parsed_node, list):
                parsed_node = [parsed_node]

            new_nodes.extend(parsed_node)
            value_node = target

        return new_nodes
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219


# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
    while (_is_wrapped(unwrapped_f)):
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f