api.py 65.8 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18
# Temporary disable isort to avoid circular import
# This can be removed after the circular import is resolved
# isort: skip_file
19 20
import os
import pickle
21
import warnings
22
from collections import OrderedDict
23
import inspect
M
Ming-Xu Huang 已提交
24
import threading
25
from typing import Text, Tuple, Any, List
26

27
import paddle
J
Jiabin Yang 已提交
28
from paddle.fluid import core, dygraph
29 30 31 32 33
from paddle.fluid.compiler import (
    BuildStrategy,
    CompiledProgram,
    ExecutionStrategy,
)
34
from paddle.fluid.data_feeder import check_type
35
from paddle.fluid.layers.utils import flatten, pack_sequence_as
36 37 38 39
from paddle.fluid.dygraph.base import (
    program_desc_tracing_guard,
    switch_to_static_graph,
)
40 41
from .dy2static import logging_utils
from .dy2static.convert_call_func import (
42 43 44
    ConversionOptions,
    CONVERSION_OPTIONS,
)
45
from .dy2static.program_translator import (
46 47 48 49
    ProgramTranslator,
    StaticFunction,
    unwrap_decorators,
)
50
from paddle.jit.translated_layer import (
51 52 53 54 55 56
    TranslatedLayer,
    INFER_MODEL_SUFFIX,
    INFER_PARAMS_SUFFIX,
    INFER_PARAMS_INFO_SUFFIX,
    INFER_PROPERTY_SUFFIX,
)
57 58
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
59 60 61 62 63 64 65 66 67 68 69 70 71
from paddle.fluid.framework import (
    Block,
    ParamBase,
    Program,
    Variable,
    Parameter,
    EagerParamBase,
)
from paddle.fluid.framework import (
    _current_expected_place,
    _dygraph_guard,
    _dygraph_tracer,
)
J
Jiabin Yang 已提交
72
from paddle.fluid.framework import dygraph_only, _non_static_mode
73
from paddle.fluid.wrapped_decorator import wrap_decorator
74

75
__all__ = []
76 77 78 79 80 81 82 83 84 85


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


86
def _extract_vars(inputs, result_list, err_tag='inputs'):
87
    if isinstance(inputs, Variable):
88
        result_list.append(inputs)
89
    elif isinstance(inputs, (list, tuple)):
90
        for var in inputs:
91
            _extract_vars(var, result_list, err_tag)
92 93
    else:
        raise TypeError(
94
            "The type of 'each element of {}' in paddle.jit.TracedLayer.trace must be fluid.Variable, but received {}.".format(
95 96 97
                err_tag, type(inputs)
            )
        )
98 99


100
def extract_vars(inputs, err_tag='inputs'):
101
    result_list = []
102
    _extract_vars(inputs, result_list, err_tag)
103 104 105
    return result_list


106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
131
          from paddle.jit.api import dygraph_to_static_func
132 133 134

          @dygraph_to_static_func
          def func(x):
135
              if paddle.mean(x) < 0:
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
155 156
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
157
        if _non_static_mode() or not program_translator.enable_to_static:
158
            logging_utils.warn(
159
                "The decorator 'dygraph_to_static_func' doesn't work in "
160
                "dygraph mode or set ProgramTranslator.enable to False. "
161 162
                "We will just return dygraph output."
            )
163 164 165
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
166 167 168 169

    return __impl__


170
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
171

172

173 174 175 176 177 178
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
179
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
180 181 182 183 184 185 186 187 188 189 190 191 192
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


193 194 195
def declarative(
    function=None, input_spec=None, build_strategy=None, property=False
):
196 197 198
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
199 200 201 202
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
203

204
    Args:
205
        function (callable): callable imperative function.
206
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
207
            information of each input Tensor.
208 209 210 211 212
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
213
        property(bool, Optional): whether the fucntion is python property. The default is False.
214

215

216
    Returns:
217
        Tensor(s): containing the numerical result.
218

219 220
    Examples:
        .. code-block:: python
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
236

237
    """
238

239 240
    def decorated(python_func):
        """
241
        Decorates a python function into a StaticFunction object.
242 243 244
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
245

246
        # Step 2. copy some attributes from original python function.
247 248 249 250 251 252 253 254 255
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticFunction(
                function=python_func,
                input_spec=input_spec,
                build_strategy=build_strategy,
                property=property,
            ),
        )
256 257

        return static_layer
258

259 260 261
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
262 263 264 265
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}".format(
                type(build_strategy).__name__
            )
        )
266

267 268
    # for usage: `declarative(foo, ...)`
    if function is not None:
269
        if isinstance(function, Layer):
270
            if isinstance(function.forward, StaticFunction):
271
                class_name = function.__class__.__name__
272
                logging_utils.warn(
273 274 275 276
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".format(
                        class_name
                    )
                )
277 278 279 280
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
281

282 283
    # for usage: `@declarative`
    return decorated
284 285


286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


326
class _SaveLoadConfig:
327 328 329 330 331
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
332 333
        # used for `paddle.load`
        self._keep_name_table = False
334 335 336 337

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

338 339
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
340 341 342 343 344
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
345
        self.with_hook = False
346

347 348 349
        # if True, multi `StaticFunction` will share params in one file.
        self.combine_params = False

350 351 352 353 354 355
    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
356 357
        if spec is None:
            return
358 359
        if not isinstance(spec, list):
            raise TypeError(
360
                "The config `output_spec` should be 'list', but received input type is %s."
361 362
                % type(input)
            )
363 364 365
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
366
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
367 368
                        % type(var)
                    )
369 370 371 372 373 374 375 376
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
377 378
        if filename is None:
            return
379
        if not isinstance(filename, str):
380
            raise TypeError(
381
                "The config `model_filename` should be str, but received input's type is %s."
382 383
                % type(filename)
            )
384
        if len(filename) == 0:
385
            raise ValueError("The config `model_filename` is empty string.")
386 387 388 389 390 391 392 393
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
394 395
        if filename is None:
            return
396
        if not isinstance(filename, str):
397
            raise TypeError(
398
                "The config `params_filename` should be str, but received input's type is %s."
399 400
                % type(filename)
            )
401
        if len(filename) == 0:
402
            raise ValueError("The config `params_filename` is empty string.")
403 404
        self._params_filename = filename

405 406 407 408 409 410
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
411 412
        if value is None:
            return
413 414
        if not isinstance(value, bool):
            raise TypeError(
415
                "The config `keep_name_table` should be bool value, but received input's type is %s."
416 417
                % type(value)
            )
418 419
        self._keep_name_table = value

420

421
def _parse_save_configs(configs):
422
    supported_configs = [
423 424 425 426 427
        'output_spec',
        "with_hook",
        "combine_params",
        "clip_extra",
        "skip_forward",
428
    ]
429 430 431 432 433 434

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
435 436
                % (key)
            )
437 438 439 440

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
441
    inner_config.with_hook = configs.get('with_hook', False)
442
    inner_config.combine_params = configs.get("combine_params", False)
443
    inner_config.clip_extra = configs.get("clip_extra", True)
H
Hui Zhang 已提交
444
    inner_config.skip_forward = configs.get("skip_forward", False)
445 446 447 448 449 450 451 452 453 454 455 456

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
457 458
                % (key)
            )
459 460 461 462 463 464 465 466 467

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


468
def _get_input_var_names(inputs, input_spec):
469 470 471 472
    name_none_error = (
        "The %s's name is None. "
        "When using jit.save, please set InputSepc's name in "
        "to_static(input_spec=[]) and jit.save(input_spec=[]) "
473
        "and make sure they are consistent."
474 475 476 477 478
    )
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of InputSpec or example Tensor "
        "in input_spec is the same as the name of InputSpec in "
479
        "`to_static` decorated on the Layer.forward method."
480
    )
481
    result_list = []
482 483 484
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
485 486
    if input_spec is None:
        # no prune
487 488 489 490
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
491 492
            spec
            for spec in input_spec
493 494 495 496
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
497 498
        # no prune
        result_list = input_var_names
499
        # if input spec name not in input_var_names, only raise warning
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


523
def _get_output_vars(outputs, output_spec, with_hook=False):
524 525 526 527
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of example Tensor "
        "in configs.output_spec is the output tensor of "
528
        "Layer.forward method."
529
    )
530 531 532 533
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
534 535
    result_list = []
    output_vars_dict = OrderedDict()
536
    for var in flatten(outputs):
537 538 539
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
540
        result_list = list(output_vars_dict.values())
541
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
542
        result_list = list(output_vars_dict.values())
543 544 545 546 547 548 549 550 551 552 553 554
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
576 577
            "of ``path`` is unique." % (path, path)
        )
578
    elif not prefix_format_exist and not directory_format_exist:
579 580 581 582 583
        raise ValueError(
            "The ``path`` (%s) to load model not exists. "
            "Please make sure that *.pdmodel exists or "
            "don't using ``skip_forward=True`` to jit.save." % path
        )
584 585 586 587 588 589 590 591
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
592 593
                    "not take effect."
                )
594 595 596 597 598
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
599 600
                    "not take effect."
                )
601 602 603 604
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
605

606
    return model_path, config
607 608


M
Ming-Xu Huang 已提交
609 610 611 612
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


613
class HookRemoveHelper:
614
    """A HookRemoveHelper that can be used to remove hook."""
M
Ming-Xu Huang 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
650
                    super().__init__()
M
Ming-Xu Huang 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


697
@wrap_decorator
M
Ming-Xu Huang 已提交
698 699 700 701 702 703 704 705 706 707
def _run_save_pre_hooks(func):
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
def _save_property(filename: Text, property_vals: List[Tuple[Any, Text]]):
    """class property serialization.

    Args:
        filename (Text): *.meta
        property_vals (List[Tuple): class property.
    """

    def set_property(meta, key, val):
        if isinstance(val, float):
            meta.set_float(key, val)
        elif isinstance(val, int):
            meta.set_int(key, val)
        elif isinstance(val, str):
            meta.set_string(key, val)
        elif isinstance(val, (tuple, list)):
            if isinstance(val[0], float):
                meta.set_floats(key, val)
            elif isinstance(val[0], int):
                meta.set_ints(key, val)
            elif isinstance(val[0], str):
                meta.set_strings(key, val)
        else:
            raise ValueError(f"Note support val type: {type(val)}")
        return

    with open(filename, 'wb') as f:
        meta = paddle.framework.core.Property()
        for item in property_vals:
            val, key = item[0], item[1]
            set_property(meta, key, val)
        f.write(meta.serialize_to_string())


M
Ming-Xu Huang 已提交
742
@_run_save_pre_hooks
743
@switch_to_static_graph
744
def save(layer, path, input_spec=None, **configs):
745
    """
746
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
747 748
    format model, which can be used for inference or fine-tuning after loading.

749
    It will save the translated program and all related persistable
750
    variables of input Layer to given ``path`` .
751 752

    ``path`` is the prefix of saved objects, and the saved translated program file
753
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
754
    and here also saved some additional variable description information to a file,
755
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
756 757

    The saved model can be loaded by follow APIs:
758 759
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
760 761
      - Other C++ inference APIs

762
    .. note::
763
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to
764 765
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

766
    Args:
767
        layer (Layer|function): The Layer or function to be saved.
768
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
769 770 771
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
772
            the original Layer's forward method would be the inputs of the saved model. Default None.
773 774
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
775 776 777
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
778 779 780
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
781

782 783 784 785 786 787
    Returns:
        None

    Examples:
        .. code-block:: python

788
            # example 1: save layer
789
            import numpy as np
790 791 792
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
793

794 795 796
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
797

798 799 800 801 802 803 804
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
805

806 807 808 809
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
810

811 812
                def __len__(self):
                    return self.num_samples
813

814 815
            class LinearNet(nn.Layer):
                def __init__(self):
816
                    super().__init__()
817
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
818

819
                @paddle.jit.to_static
820 821 822
                def forward(self, x):
                    return self._linear(x)

823 824 825 826 827 828 829 830 831 832 833 834
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
835

836 837 838 839
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
840

841 842 843 844 845 846 847
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
848

849 850
            # train
            train(layer, loader, loss_fn, adam)
851

852
            # save
853 854
            path = "example_model/linear"
            paddle.jit.save(layer, path)
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
875

876
            save_function()
877 878
    """

879
    # 1. input build & check
880
    prog_translator = ProgramTranslator()
881
    if not prog_translator.enable_to_static:
882
        raise RuntimeError(
883
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
884
        )
885

886 887 888 889 890
    if not (
        isinstance(layer, Layer)
        or inspect.isfunction(layer)
        or isinstance(layer, StaticFunction)
    ):
891
        raise TypeError(
892
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
893 894
            % type(layer)
        )
895 896 897 898
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
899

900 901
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
902
    # function_spec, so here we save DataParallel._layers instead
903 904 905 906 907 908 909
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

910 911 912 913 914 915
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
916 917
            "file_prefix is empty string."
        )
918 919 920 921

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
922

923 924
    # avoid change user given input_spec
    inner_input_spec = None
925
    if input_spec is not None:
926 927 928
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
929 930 931 932
                if (
                    isinstance(static_func, StaticFunction)
                    and 'forward' != attr_func
                ):
933 934
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
935 936
                        % type(input_spec)
                    )
937

938
        if not isinstance(input_spec, (list, tuple)):
939 940
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
941 942
                % type(input_spec)
            )
943
        inner_input_spec = []
944
        for var in flatten(input_spec):
945 946
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
947
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
948
                inner_input_spec.append(
949 950
                    paddle.static.InputSpec.from_tensor(var)
                )
951
            else:
952 953
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
954

955 956
    # parse configs
    configs = _parse_save_configs(configs)
957
    # whether outermost layer has pre/post hook, if does, we need also save
958
    # these operators in program.
959
    with_hook = configs.with_hook
960 961 962
    combine_params = configs.combine_params
    if combine_params:
        configs._program_only = True
963

964 965
    scope = core.Scope()
    extra_var_info = dict()
966 967
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
968 969
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
970 971
    else:
        # layer is function
972 973 974
        functions = [
            layer,
        ]
975

976
    combine_vars = {}
977
    property_vals = []  # (value, key)
H
Hui Zhang 已提交
978
    concrete_program = None
979 980 981 982
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
983 984 985 986
                if static_func.is_property:
                    # property method to be exported
                    immediate_val = static_func()
                    property_vals.append(
987 988 989 990 991
                        (
                            immediate_val,
                            layer.__class__.__name__ + '.' + attr_func,
                        )
                    )
992 993
                    continue

994 995 996 997 998
                concrete_program = (
                    static_func.concrete_program_specify_input_spec(
                        inner_input_spec, with_hook=with_hook
                    )
                )
999
            elif 'forward' == attr_func:
H
Hui Zhang 已提交
1000 1001 1002 1003
                if configs.skip_forward:
                    # do not jit.save forward function
                    continue

1004
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
1005
                # inner_input_spec is list[InputSpec], it should be packed with same structure
1006 1007
                # as original input_spec here.
                if inner_input_spec:
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
                    inner_input_spec = pack_sequence_as(
                        input_spec, inner_input_spec
                    )
                static_forward = declarative(
                    inner_layer.forward, input_spec=inner_input_spec
                )
                concrete_program = (
                    static_forward.concrete_program_specify_input_spec(
                        with_hook=with_hook
                    )
                )
1019 1020 1021 1022 1023 1024
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue
1025 1026 1027
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
1028 1029 1030 1031 1032 1033
                if attr_func.is_property:
                    # property method to be exported
                    immediate_val = attr_func()
                    property_vals.append((immediate_val, attr_func))
                    continue

1034 1035 1036 1037 1038
                concrete_program = (
                    attr_func.concrete_program_specify_input_spec(
                        inner_input_spec
                    )
                )
1039 1040
            else:
                if inner_input_spec:
1041 1042 1043 1044 1045 1046
                    inner_input_spec = pack_sequence_as(
                        input_spec, inner_input_spec
                    )
                static_function = declarative(
                    attr_func, input_spec=inner_input_spec
                )
1047 1048 1049 1050
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
1051 1052 1053 1054
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'.format(
                            layer
                        )
                    )
1055

1056
        # when save multi `StaticFunction`, all `StaticFunction` share params.
1057 1058
        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
1059
            dygraph_state_dict = inner_layer.to_static_state_dict()
1060 1061
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
1062 1063
                dygraph_state_dict = (
                    attr_func._class_instance.to_static_state_dict()
1064
                )
1065 1066

        if dygraph_state_dict:
1067 1068 1069 1070 1071
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
1072
            state_var_dict = dict()
1073
            for structured_name, var in dygraph_state_dict.items():
1074
                state_names_dict[var.name] = structured_name
1075
                state_var_dict[var.name] = var
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        # 3. share parameters from Layer to scope & record var info
        with dygraph.guard():
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                    scr_tensor = param_or_buffer.value().get_map_tensor()
                    tgt_var = scope.var(param_or_buffer.name)
                    tgt_var.set_vocab(scr_tensor)
                else:
                    param_or_buffer_tensor = scope.var(
1087 1088 1089 1090 1091 1092 1093 1094
                        param_or_buffer.name
                    ).get_tensor()
                    # src_tensor = param_or_buffer.value().get_tensor()
                    src_tensor = (
                        state_var_dict[param_or_buffer.name]
                        .value()
                        .get_tensor()
                    )
1095 1096 1097 1098 1099 1100
                    param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
1101 1102
                            param_or_buffer.name
                        ]
1103
                    extra_info_dict[
1104 1105
                        'stop_gradient'
                    ] = param_or_buffer.stop_gradient
1106 1107 1108
                    if isinstance(param_or_buffer, (ParamBase, EagerParamBase)):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
1109 1110

        # 4. build input & output of save_infernece_model
1111 1112 1113 1114 1115 1116 1117 1118
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
1119 1120 1121
        input_var_names = _get_input_var_names(
            concrete_program.inputs, inner_input_spec
        )
1122 1123

        # NOTE(chenweihang): [ Get output variables ]
1124 1125
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
1126
        # var name of output, and we don't recommended to use output_spec
1127 1128
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
1129 1130 1131
        output_vars = _get_output_vars(
            concrete_program.outputs, configs.output_spec, with_hook
        )
1132 1133 1134 1135 1136 1137 1138

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
1139
        # so we don't support set model_filename & params_filename
1140
        if 'forward' == attr_func or not isinstance(layer, Layer):
1141 1142 1143 1144
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
1145 1146 1147
            params_filename = (
                file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX
            )
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
1159
                program_only=configs._program_only,
1160 1161
                clip_extra=configs.clip_extra,
            )
1162

1163 1164 1165
        if combine_params:
            clone_main_program = concrete_program.main_program.clone()
            clone_main_program = clone_main_program._prune_with_input(
1166 1167
                input_var_names, output_vars
            )
1168 1169
            for block in clone_main_program.blocks:
                combine_vars.update(block.vars)
1170 1171 1172

    # save shared params
    if combine_params:
1173 1174 1175 1176 1177 1178
        # sort vars by name
        combine_vars = sorted(combine_vars.items(), key=lambda item: item[0])
        ordered_vars = []
        for name, var in combine_vars:
            ordered_vars.append(var)

1179 1180
        params_filename = file_prefix + INFER_PARAMS_SUFFIX
        with scope_guard(scope):
1181 1182 1183 1184 1185 1186
            paddle.static.save_vars(
                Executor(_current_expected_place()),
                dirname=model_path,
                vars=list(filter(paddle.fluid.io.is_persistable, ordered_vars)),
                filename=params_filename,
            )
1187
        # save property
1188 1189 1190
        property_save_path = os.path.join(
            os.path.normpath(model_path), file_prefix + INFER_PROPERTY_SUFFIX
        )
1191
        _save_property(property_save_path, property_vals)
1192

1193 1194 1195 1196 1197 1198 1199
    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1200 1201
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1202 1203
    # configure redundant information to proceed.
    #
1204 1205
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1206 1207
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1208 1209 1210

    # "layer" can only be Layer or function or StaticFunction.
    contain_parameter = False
H
Hui Zhang 已提交
1211 1212 1213
    if concrete_program is not None:
        for var in concrete_program.main_program.list_vars():
            contain_parameter |= isinstance(var, Parameter)
1214 1215

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1216 1217 1218 1219
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1220 1221 1222


@dygraph_only
1223
def load(path, **configs):
1224 1225 1226
    """
    :api_attr: imperative

1227 1228
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1229
    then performing inference or fine-tune training.
1230 1231

    .. note::
1232
        If you load model saved by ``paddle.static.save_inference_model`` ,
1233 1234
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1235
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1236 1237 1238 1239
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1240
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1241 1242
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1243 1244
            DO NOT use them. Default None.
            The following options are currently supported:
1245 1246 1247 1248
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1249 1250
            by default.

1251 1252 1253 1254 1255

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1256
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1257 1258 1259 1260

        .. code-block:: python

            import numpy as np
1261 1262 1263
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1264

1265 1266 1267
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1268

1269 1270
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1271

1272 1273 1274 1275
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1276

1277 1278 1279 1280
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1281

1282 1283 1284 1285 1286
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1287
                    super().__init__()
1288
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1289

1290
                @paddle.jit.to_static
1291 1292 1293
                def forward(self, x):
                    return self._linear(x)

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1305
            # 1. train & save model.
1306

1307
            # create network
1308 1309 1310 1311
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1312
            # create data loader
1313 1314 1315 1316 1317 1318
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1319

1320 1321
            # train
            train(layer, loader, loss_fn, adam)
1322

1323
            # save
1324 1325
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1326

1327
            # 2. load model
1328

1329
            # load
1330
            loaded_layer = paddle.jit.load(path)
1331 1332

            # inference
1333 1334 1335
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1336 1337

            # fine-tune
1338 1339 1340
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1341 1342


1343
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1344 1345 1346 1347

        .. code-block:: python

            import numpy as np
1348
            import paddle
1349
            import paddle.static as static
1350 1351
            import paddle.nn as nn
            import paddle.optimizer as opt
1352
            import paddle.nn.functional as F
1353

1354 1355 1356
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1357

1358 1359 1360 1361 1362 1363 1364
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1365

1366 1367 1368 1369
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1370

1371 1372
                def __len__(self):
                    return self.num_samples
1373

1374 1375
            paddle.enable_static()

1376 1377
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1378
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1379 1380
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1381

1382
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1383 1384
            optimizer.minimize(avg_loss)

1385 1386 1387
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1388

1389 1390 1391 1392 1393
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1394
                batch_size=BATCH_SIZE,
1395 1396
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1397
                return_list=False,
1398
                num_workers=2)
1399 1400 1401 1402

            # 1. train and save inference model
            for data in loader():
                exe.run(
1403
                    static.default_main_program(),
1404
                    feed=data,
1405 1406 1407
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1408
            paddle.fluid.io.save_inference_model(
1409 1410 1411
                model_path, ["image"], [pred], exe)

            # 2. load model
1412 1413

            # enable dygraph mode
1414 1415 1416 1417
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1418

1419 1420 1421
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1422 1423
            pred = fc(x)

1424
            # fine-tune
1425
            fc.train()
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1443
    """
1444 1445 1446 1447
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1448
    return TranslatedLayer._construct(model_path, config)
1449 1450


1451
@dygraph_only
1452 1453 1454
def _trace(
    layer, inputs, feed_prefix='feed_', fetch_prefix='fetch_', tmp_prefix='t_'
):
1455
    assert isinstance(layer, Layer)
1456 1457 1458 1459 1460 1461 1462 1463 1464

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1465
        original_outputs = layer(*inputs)
1466 1467 1468 1469
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1470
        out_vars = extract_vars(outputs, err_tag='outputs')
1471

1472 1473 1474 1475 1476 1477 1478 1479
        (
            program_desc,
            feed_names,
            fetch_names,
            parameters,
        ) = tracer.create_program_desc(
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix
        )
1480 1481 1482 1483 1484
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1485
    return original_outputs, program, feed_names, fetch_names, parameters
1486 1487


1488
class TracedLayer:
1489
    """
1490
    :api_attr: imperative
1491

1492 1493 1494 1495 1496
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1497 1498 1499 1500

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1501 1502

    All TracedLayer objects should not be created by constructor and should
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1514
        self._params = parameters
1515 1516 1517 1518 1519

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1520
            src_tensor = p.value().get_tensor()
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1544
        This method is the only allowed method to create TracedLayer object.
1545 1546 1547 1548
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1549
            layer (paddle.nn.Layer): the layer object to be traced.
1550 1551
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1552 1553

        Returns:
1554
            tuple: A tuple of 2 items, whose the first item is the output of
1555 1556
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1557

1558
        Examples:
1559 1560
            .. code-block:: python:

1561 1562
                import os
                os.environ['FLAGS_enable_eager_mode'] = '0'
1563
                import paddle
1564

1565
                class ExampleLayer(paddle.nn.Layer):
1566
                    def __init__(self):
1567
                        super().__init__()
1568
                        self._fc = paddle.nn.Linear(3, 10)
1569 1570 1571 1572

                    def forward(self, input):
                        return self._fc(input)

1573

1574 1575 1576 1577 1578 1579
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1580

1581 1582
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1583

1584
                # save the static graph model for inference
1585
                static_layer.save_inference_model('./saved_infer_model')
1586

1587
        """
1588 1589
        assert isinstance(
            layer, Layer
1590
        ), "The type of 'layer' in paddle.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
1591 1592
            type(layer)
        )
1593 1594
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1595 1596 1597 1598 1599 1600 1601
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1602
            build_strategy (BuildStrategy, optional): build strategy of
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1613 1614
                import os
                os.environ['FLAGS_enable_eager_mode'] = '0'
1615
                import paddle
1616

1617
                class ExampleLayer(paddle.nn.Layer):
1618
                    def __init__(self):
1619
                        super().__init__()
1620
                        self._fc = paddle.nn.Linear(3, 10)
1621 1622 1623 1624

                    def forward(self, input):
                        return self._fc(input)

1625 1626 1627 1628
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1629

1630 1631
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1632

1633 1634
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1635

1636 1637
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1638 1639 1640

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1641 1642
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
1643
        ), "The type of 'build_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
1644 1645
            type(build_strategy)
        )
1646 1647
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
1648
        ), "The type of 'exec_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
1649 1650
            type(exec_strategy)
        )
1651 1652 1653 1654 1655 1656
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
1657 1658 1659 1660 1661 1662
            self._program
        ).with_data_parallel(
            build_strategy=self._build_strategy,
            exec_strategy=self._exec_strategy,
            places=self._place,
        )
1663 1664

    def _build_feed(self, inputs):
1665 1666 1667
        assert isinstance(
            inputs, (list, tuple)
        ), "Inputs should be a list or tuple of variables"
1668 1669
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1670
        if _non_static_mode():
1671
            for x, name in zip(inputs, self._feed_names):
1672
                feed_dict[name] = x.value().get_tensor()
1673 1674 1675 1676 1677 1678 1679 1680
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
1681 1682 1683
        return self._exe.run(
            self._compiled_program, feed=feed, fetch_list=self._fetch_names
        )
1684 1685 1686 1687 1688 1689 1690 1691 1692

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1693
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1694
        """
1695 1696
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1697

1698 1699 1700
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1701
        Args:
1702
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1703
            feed (list[int], optional): the input variable indices of the saved
1704
                inference model. If None, all input variables of the
1705 1706 1707 1708 1709 1710
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1711
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1712 1713

        Returns:
1714
            None
1715 1716 1717 1718

        Examples:
            .. code-block:: python:

1719 1720
                import os
                os.environ['FLAGS_enable_eager_mode'] = '0'
1721
                import numpy as np
1722
                import paddle
1723

1724
                class ExampleLayer(paddle.nn.Layer):
1725
                    def __init__(self):
1726
                        super().__init__()
1727
                        self._fc = paddle.nn.Linear(3, 10)
1728 1729 1730 1731

                    def forward(self, input):
                        return self._fc(input)

1732 1733
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1734 1735
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1736

1737 1738
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1739

1740 1741 1742 1743
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1744
                                                    exe)
1745 1746 1747

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1748
        """
1749 1750 1751 1752
        check_type(
            path,
            "path",
            str,
1753
            "paddle.jit.TracedLayer.save_inference_model",
1754 1755 1756 1757 1758
        )
        check_type(
            feed,
            "feed",
            (type(None), list),
1759
            "paddle.jit.TracedLayer.save_inference_model",
1760
        )
1761 1762
        if isinstance(feed, list):
            for f in feed:
1763
                check_type(
1764 1765 1766
                    f,
                    "each element of feed",
                    int,
1767
                    "paddle.jit.TracedLayer.save_inference_model",
1768 1769 1770 1771 1772
                )
        check_type(
            fetch,
            "fetch",
            (type(None), list),
1773
            "paddle.jit.TracedLayer.save_inference_model",
1774
        )
1775 1776
        if isinstance(fetch, list):
            for f in fetch:
1777
                check_type(
1778 1779 1780
                    f,
                    "each element of fetch",
                    int,
1781
                    "paddle.jit.TracedLayer.save_inference_model",
1782
                )
1783
        clip_extra = kwargs.get('clip_extra', True)
1784 1785 1786 1787 1788 1789
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
1790 1791
                "file_prefix is empty string."
            )
1792 1793 1794 1795 1796

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1797
        from paddle.fluid.io import save_inference_model
1798 1799 1800 1801 1802

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1803
            return [all_vars[idx] for idx in partial_vars]
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1814 1815 1816
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
            save_inference_model(
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                clip_extra=clip_extra,
            )