dynamic_recurrent_op.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve .

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/dynamic_recurrent_op.h"

#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Scope;
using framework::TensorArray;
using framework::LoDTensor;
using framework::Variable;

namespace detail {

inline void CreateVariables(Scope& scope,
                            const std::vector<std::string>& var_names) {
  for (const auto& name : var_names) {
    scope.NewVar(name);
  }
}

}  // namespace detail

class DynamicRecurrentOpProtoAndCheckerMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  DynamicRecurrentOpProtoAndCheckerMaker(framework::OpProto* proto,
                                         framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    const auto& name = DynamicRecurrentOp::kArgName;
    // inputs and outputs stored in proto
    AddInput(name.inlinks,
             "the inputs that need to be segmented for each step.")
        .AsDuplicable();
    AddInput(name.boot_memories, "variables to initialize memories.")
        .AsDuplicable();

    AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
        .AsDuplicable();
    AddOutput(name.step_scopes, "step scopes");

    // Attributes stored in AttributeMap
    AddAttr<std::vector<std::string>>(name.pre_memories,
                                      "names of pre-memories");
    AddAttr<std::vector<std::string>>(name.memories, "names of memories");

    AddComment("This is a RNN operator for varience-length sequences.");
  }
};

void DynamicRecurrentOp::Run(const Scope& scope,
                             const platform::DeviceContext& dev_ctx) const {
  cache_.Init(kArgName, *this, scope, &arg_);
  SplitInputs();
  CreateScopes();
  WriteStepInputs();
  InitStates();

  // call stepnet in all the time steps
  for (size_t step = 0; step < cache_.num_steps; step++) {
    auto& step_scope = cache_.GetScope(step);
    stepnet_->Run(step_scope, dev_ctx);
  }

  WriteStepOutputs();
  ConcatOutputs();
}

void DynamicRecurrentOp::SplitInputs() const {
  // TODO(superjom) make level a config
  // TODO(superjom) check all the inputs has the same LoD
  int level = 0;
  const auto& inlinks = cache_.inlinks;
  for (const auto& item : inlinks) {
    const auto& var = item.second;
    const auto& tensor = var->Get<LoDTensor>();
    TensorArray& ta = step_inputs_[item.first];
    dy_seq_metas_[item.first] =
        ta.Unpack(tensor, level, true /*length_descend*/);

    if (cache_.num_steps) {
      PADDLE_ENFORCE_EQ(ta.size(), cache_.num_steps,
                        "inputs should have the same steps");
    } else {
      cache_.num_steps = ta.size();
    }
  }
}

void DynamicRecurrentOp::WriteStepInputs() const {
  for (const auto& item : cache_.inlinks) {
    auto ta_it = step_inputs_.find(item.first);
    PADDLE_ENFORCE(ta_it != step_inputs_.end(),
                   "step_inputs_ not compatible with memory set");
    TensorArray& ta = ta_it->second;
    for (size_t step = 0; step < ta.size(); step++) {
      auto tensor = ta.Read(step);
      auto& step_scope = cache_.GetScope(step);
      Variable* var = step_scope.FindVar(item.first);
      if (var == nullptr) {
        var = step_scope.NewVar(item.first);
      }
      var->GetMutable<LoDTensor>()->ShareDataWith<value_type>(tensor);
    }
  }
}

void DynamicRecurrentOp::WriteStepOutputs() const {
  for (size_t step = 0; step < cache_.scopes->size(); step++) {
    auto& scope = cache_.GetScope(step);
    for (auto& item : step_outputs_) {
      auto* var = scope.FindVar(item.first);
      if (var == nullptr) {
        var = scope.NewVar(item.first);
      }
      auto* tensor = var->GetMutable<LoDTensor>();
      item.second.WriteShared(step, *tensor);
    }
  }
}

void DynamicRecurrentOp::CreateScopes() const {
  PADDLE_ENFORCE_GT(cache_.num_steps, 0);
  // resize scopes
  size_t num_scopes_need_create = cache_.num_steps - cache_.scopes->size();
  for (size_t i = 0; i < num_scopes_need_create; i++) {
    cache_.scopes->emplace_back(&cache_.scope->NewScope());
  }

  // init temporary inputs
  PADDLE_ENFORCE_NOT_NULL(stepnet_, "stepnet should be set first");
  std::vector<std::string> memories;
  std::vector<std::string> pre_memories;
  std::transform(arg_.memories.begin(), arg_.memories.end(),
                 std::back_inserter(memories),
                 [](const rnn::MemoryAttr& m) { return m.var; });
  std::transform(arg_.memories.begin(), arg_.memories.end(),
                 std::back_inserter(pre_memories),
                 [](const rnn::MemoryAttr& m) { return m.pre_var; });

  for (size_t step = 0; step < cache_.num_steps; step++) {
    auto& scope = cache_.GetScope(step);
    detail::CreateVariables(scope, arg_.inlinks);
    detail::CreateVariables(scope, arg_.outlinks);
    detail::CreateVariables(scope, memories);
    detail::CreateVariables(scope, pre_memories);
  }
}

void DynamicRecurrentOp::ConcatOutputs() const {
  // TODO(superjom) transform this to a config
  int level = 0;
  // TODO(superjom) pass in some lod
  // just a placeholder
  framework::LoD lod;
  for (auto& item : step_outputs_) {
    auto tensor = item.second.Pack(level, dy_seq_metas_[item.first], lod);
    auto& output = cache_.outlinks[item.first]->Get<LoDTensor>();
    const_cast<LoDTensor*>(&output)->ShareDataWith<value_type>(tensor);
  }
}

void DynamicRecurrentOp::InitStates() const {
  // init the first state
  // TODO(superjom) parepare the scenerio that boot state not exists
  for (auto memory : arg_.memories) {
    auto* boot_state_var = cache_.scope->FindVar(memory.boot_var);
    PADDLE_ENFORCE_NOT_NULL(boot_state_var);
    auto& boot_state = boot_state_var->Get<LoDTensor>();
    const auto& dims = boot_state.dims();

    for (size_t step = 0; step < cache_.num_steps; step++) {
      auto& cur_scope = cache_.GetScope(step);
      // link pre-state to boot_state
      // init state and pre-state
      auto* pre_state = cur_scope.FindVar(memory.pre_var);
      PADDLE_ENFORCE_NOT_NULL(pre_state);
      pre_state->GetMutable<LoDTensor>();

      auto* state = cur_scope.FindVar(memory.var);
      PADDLE_ENFORCE_NOT_NULL(state);
      state->GetMutable<LoDTensor>()->Resize(dims);
      state->GetMutable<LoDTensor>()->mutable_data<value_type>(
          platform::CPUPlace());

      if (step == 0) {
        auto* pre_state_tensor = pre_state->GetMutable<LoDTensor>();
        pre_state_tensor->Resize(boot_state.dims());
        pre_state_tensor->ShareDataWith<value_type>(boot_state);
      } else {
        auto& pre_scope = cache_.GetScope(step - 1);
        auto* state_pre = pre_scope.FindVar(memory.var);
        PADDLE_ENFORCE_NOT_NULL(state_pre);
        pre_state->GetMutable<LoDTensor>()->ShareDataWith<value_type>(
            *state_pre->GetMutable<LoDTensor>());
      }
    }
  }
}

void DynamicRecurrentOp::ArgCache::Init(
    const rnn::ArgumentName& name, const paddle::framework::OperatorBase& op,
    const paddle::framework::Scope& scope, rnn::Argument* arg) {
  this->scope = &scope;
  InitArgument(name, op, arg);
  CacheScopes(scope, *arg);
  CacheInlinks(scope, arg->inlinks);
  CacheOutlinks(scope, arg->outlinks);
}

void DynamicRecurrentOp::ArgCache::InitArgument(const rnn::ArgumentName& name,
                                                const OperatorBase& op,
                                                rnn::Argument* arg) {
  rnn::InitArgument(name, arg, op, false /*is_grad*/);
}

void DynamicRecurrentOp::ArgCache::CacheScopes(const Scope& scope,
                                               const rnn::Argument& arg) {
  auto scopes_var = scope.FindVar(arg.step_scopes);
  PADDLE_ENFORCE(scopes_var != nullptr,
                 "the step_scopes output argument [%s] should be created first "
                 "by framework.",
                 arg.step_scopes);
  this->scopes = scopes_var->GetMutable<std::vector<Scope*>>();
}

void DynamicRecurrentOp::ArgCache::CacheInlinks(
    const Scope& scope, const std::vector<std::string>& names) {
  for (auto name : names) {
    auto* var = GetVariable(scope, name);
    inlinks[name] = var;
  }
}

void DynamicRecurrentOp::ArgCache::CacheOutlinks(
    const Scope& scope, const std::vector<std::string>& names) {
  for (auto name : names) {
    auto* var = GetVariable(scope, name);
    outlinks[name] = var;
  }
}

Variable* DynamicRecurrentOp::ArgCache::GetVariable(const Scope& scope,
                                                    const std::string& name) {
  auto* var = scope.FindVar(name);
  PADDLE_ENFORCE_NOT_NULL(var, "variable [%s] not exist in scope", name);
  return var;
}

const rnn::ArgumentName DynamicRecurrentOp::kArgName{
    "step_net", "step_scopes",  "inlinks",      "outlinks",
    "memories", "pre_memories", "boot_memories"};

void DynamicRecurrentGradientOp::Run(
    const Scope& scope, const platform::DeviceContext& dev_ctx) const {}

}  // namespace operators
}  // namespace paddle

REGISTER_OP_WITHOUT_GRADIENT(
    dynamic_recurrent, paddle::operators::DynamicRecurrentOp,
    paddle::operators::DynamicRecurrentOpProtoAndCheckerMaker);