prroi_pool_op.cc 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/prroi_pool_op.h"
#include <memory>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class PRROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor), "
             "the input of PRROIPoolOp. "
             "The format of input tensor is NCHW. Where N is the batch size, "
             "C is the number of input channels, "
             "H is the height of the input feature map, and "
             "W is the width.");
    AddInput("ROIs",
             "(LoDTensor), "
             "ROIs (Regions of Interest) to pool over. "
             "should be a 2-D LoDTensor of shape (num_rois, 4) "
             "given as [(x1, y1, x2, y2), ...]. "
             "where (x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates. "
             "The roi batch index can be calculated from LoD.");
42 43 44 45 46
    AddInput("BatchRoINums",
             "(Tensor), "
             "1-D tensor with shape [N], the number of"
             " rois for each image in batch, where N is the batch size")
        .AsDispensable();
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    AddOutput("Out",
              "(Tensor), "
              "the output of PRROIPoolOp is a 4-D Tensor with shape "
              "(num_rois, output_channels, pooled_h, pooled_w).");
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "the pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "the pooled output width.")
        .SetDefault(1);
    AddComment(R"Doc(
**PRROIPool Operator**

Precise region of interest pooling (also known as PRROIPooling) is to perform
 bilinear interpolation average pooling method for RoI Pooling.

Please refer to https://arxiv.org/abs/1807.11590 for more details.

    )Doc");
  }
};

class PRROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
82 83 84 85
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prroi_pool");
    OP_INOUT_CHECK(ctx->HasInput("ROIs"), "Input", "ROIs", "prroi_pool");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Input", "Out", "prroi_pool");

86 87 88 89
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

    PADDLE_ENFORCE_EQ(input_dims.size(), 4,
90 91 92 93 94 95 96 97 98 99 100 101
                      platform::errors::InvalidArgument(
                          "The format of input tensor is NCHW"));
    PADDLE_ENFORCE_EQ(
        rois_dims.size(), 2,
        platform::errors::InvalidArgument(
            "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
            "given as [(x1, y1, x2, y2), ...]"));
    PADDLE_ENFORCE_EQ(
        rois_dims[1], 4,
        platform::errors::InvalidArgument(
            "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
            "given as [(x1, y1, x2, y2), ...]"));
102 103 104 105 106
    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

    PADDLE_ENFORCE_GT(pooled_height, 0,
107 108
                      platform::errors::InvalidArgument(
                          "The pooled output height must be greater than 0"));
109
    PADDLE_ENFORCE_GT(pooled_width, 0,
110 111
                      platform::errors::InvalidArgument(
                          "The pooled output width must be greater than 0"));
112
    PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
113 114
                      platform::errors::InvalidArgument(
                          "The spatial scale must greater than 0."));
115 116 117

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
118
    out_dims[1] = input_dims[1];
119 120
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
121 122 123 124 125 126 127 128

    if (ctx->HasInput("BatchRoINums")) {
      auto rois_batch_index = ctx->GetInputDim("BatchRoINums");
      PADDLE_ENFORCE_EQ(rois_batch_index[0], input_dims[0],
                        platform::errors::InvalidArgument(
                            "The length of BatchRoINums should equal to  "
                            "first dim of inputs(X)"));
    }
129 130 131 132 133 134
    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
135 136 137
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
138 139 140 141 142 143 144 145
  }
};

class PRROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
146 147 148 149
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "prroi_pool");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "prroi_pool");
150
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
151
    ctx->SetOutputDim(framework::GradVarName("ROIs"), ctx->GetInputDim("ROIs"));
152 153 154 155 156
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
157 158 159
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
160 161 162
  }
};

H
hong 已提交
163 164
template <typename T>
class PRROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
165
 public:
H
hong 已提交
166
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
167 168

 protected:
169
  void Apply(GradOpPtr<T> op) const override {
170
    op->SetType("prroi_pool_grad");
H
hong 已提交
171 172 173
    op->SetInput("X", this->Input("X"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("ROIs", this->Input("ROIs"));
174
    op->SetInput("BatchRoINums", this->Input("BatchRoINums"));
H
hong 已提交
175 176 177 178
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("ROIs"), this->InputGrad("ROIs"));
    op->SetAttrMap(this->Attrs());
179 180 181 182 183 184 185
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(prroi_pool, ops::PRROIPoolOp, ops::PRROIPoolOpMaker,
H
hong 已提交
186 187
                  ops::PRROIPoolGradMaker<paddle::framework::OpDesc>,
                  ops::PRROIPoolGradMaker<paddle::imperative::OpBase>);
188 189 190 191
REGISTER_OPERATOR(prroi_pool_grad, ops::PRROIPoolGradOp);
REGISTER_OP_CPU_KERNEL(
    prroi_pool,
    ops::CPUPRROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
192 193 194
    ops::CPUPRROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::CPUPRROIPoolOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CPUPRROIPoolOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
195 196 197
REGISTER_OP_CPU_KERNEL(
    prroi_pool_grad,
    ops::CPUPRROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
198 199 200
    ops::CPUPRROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::CPUPRROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CPUPRROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, int64_t>);