momentum.py 10.2 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable, name_scope
19
from ..fluid.layer_helper import LayerHelper
20 21
from ..fluid import unique_name
from ..fluid import layers
22
import paddle.fluid as fluid
23
from paddle.fluid.regularizer import L2DecayRegularizer
J
Jiawei Wang 已提交
24 25 26 27
__all__ = ["Momentum"]


class Momentum(Optimizer):
28
    r"""
J
Jiawei Wang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

        &\quad   param = param - (gradient + mu * velocity) * learning\_rate

        & else:

        &\quad   param = param - learning\_rate * velocity

    Parameters:

        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
        momentum (float): Momentum factor. The default value is 0.9.
        parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
        It canbe a float value as coeff of L2 regularization or \
        :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
        If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
        the regularization setting here in optimizer will be ignored for this parameter. \
        Otherwise, the regularization setting here in optimizer will take effect. \
        Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
67 68 69
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` before updating. \
            Often choose to be ``1.0/batch_size``.
J
Jiawei Wang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            momentum = paddle.optimizer.Momentum(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
            back = out.backward()
            momentum.step()
            momentum.clear_grad()
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate=0.001,
                 momentum=0.9,
                 parameters=None,
                 use_nesterov=False,
                 weight_decay=None,
                 grad_clip=None,
101 102
                 multi_precision=False,
                 rescale_grad=1.0,
J
Jiawei Wang 已提交
103 104 105 106 107
                 name=None):
        if learning_rate is None:
            raise ValueError("learning_rate is not set")
        if momentum is None:
            raise ValueError("momentum is not set")
108 109
        predicate = lambda regular: isinstance(regular, L2DecayRegularizer)
        py_regular = None if predicate(weight_decay) else weight_decay
J
Jiawei Wang 已提交
110 111 112
        super(Momentum, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
113
            weight_decay=py_regular,
J
Jiawei Wang 已提交
114 115 116 117 118
            grad_clip=grad_clip,
            name=name)
        self.type = "momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
119 120 121 122 123 124 125 126 127
        self._regularization_method = ""
        self._regularization_coeff = 0
        if (isinstance(weight_decay, L2DecayRegularizer)):
            self._regularization_method = "l2_decay"
            self._regularization_coeff = weight_decay._regularization_coeff
        self._multi_precision = multi_precision
        self._rescale_grad = rescale_grad
        self._master_weights = {}

128 129 130 131 132 133 134 135 136
        if framework.in_dygraph_mode():
            self.helper = LayerHelper(self.__class__.__name__)
            for p in parameters:
                self._add_accumulator(self._velocity_acc_str, p)
        else:
            all_parameters = fluid.default_main_program().global_block(
            ).all_parameters()
            self.helper = LayerHelper(self.__class__.__name__)
            for p in all_parameters:
137 138 139 140 141 142 143 144 145
                if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                    master_p = self._create_master_weight(p)
                    self._add_accumulator(self._velocity_acc_str, master_p)
                    continue
                if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                    warnings.warn(
                        "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                        "Consider using multi_precision=True option of the Momentum optimizer."
                    )
146
                self._add_accumulator(self._velocity_acc_str, p)
J
Jiawei Wang 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    def _create_master_weight(self, param):
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_fp32_master"
        var_name = unique_name.generate(var_name)
        var = layers.create_global_var(
            name=var_name,
            shape=param.shape,
            value=0,
            dtype='float32',
            persistable=True)
        block = self.helper.startup_program.global_block()
        block.append_op(
            type="cast",
            inputs={"X": [param]},
            outputs={"Out": [var]},
            attrs={
                "in_dtype": param.dtype,
                "out_dtype": core.VarDesc.VarType.FP32
            })
        self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
        if (name not in self._accumulators or
                target_name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, target_name))
        return self._accumulators[name][target_name]

J
Jiawei Wang 已提交
193 194
    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
195
        # create accumulator in init func, so no implementation here
J
Jiawei Wang 已提交
196 197 198 199 200 201

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
202 203 204 205
        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)
J
Jiawei Wang 已提交
206 207 208
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
209 210 211 212 213 214
            _, _ = core.ops.momentum(
                param_and_grad[0], param_and_grad[1], velocity_acc, lr,
                param_and_grad[0], velocity_acc, 'mu', self._momentum,
                'use_nesterov', self._use_nesterov, 'regularization_method',
                self._regularization_method, 'regularization_coeff',
                self._regularization_coeff)
J
Jiawei Wang 已提交
215 216
            return None

217 218 219 220 221 222 223 224 225
        attrs = {
            "mu": self._momentum,
            "use_nesterov": self._use_nesterov,
            "regularization_method": self._regularization_method,
            "regularization_coeff": self._regularization_coeff,
            "multi_precision": find_master,
            "rescale_grad": self._rescale_grad
        }

J
Jiawei Wang 已提交
226 227 228 229 230 231 232 233 234 235 236
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
            "LearningRate": [lr]
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
237 238 239 240 241

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiawei Wang 已提交
242 243 244 245 246 247 248 249 250
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True)

        return momentum_op