dropout_op.cu 8.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include <cuda.h>
#include <curand_kernel.h>
16 17 18 19
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
20
#include <algorithm>
P
phlrain 已提交
21
#include <string>
22
#include "paddle/fluid/memory/memcpy.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/operators/dropout_op.h"
24
#include "paddle/fluid/platform/dynload/curand.h"
K
Kexin Zhao 已提交
25
#include "paddle/fluid/platform/float16.h"
26

27 28 29
namespace paddle {
namespace operators {

Z
Zeng Jinle 已提交
30
template <typename T, typename MaskType>
31
__global__ void RandomGenerator(const size_t n, uint64_t seed,
32
                                const float dropout_prob, const T* src,
Z
Zeng Jinle 已提交
33
                                MaskType* mask_data, T* dst,
34
                                bool is_upscale_in_train, uint64_t increment) {
35
  curandStatePhilox4_32_10_t state;
D
dzhwinter 已提交
36
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
37
  curand_init(seed, idx, increment, &state);
38

Z
Zeng Jinle 已提交
39
  MaskType mask;
40
  T dest;
D
dzhwinter 已提交
41
  for (; idx < n; idx += blockDim.x * gridDim.x) {
42
    T s = src[idx];
43
    if (curand_uniform(&state) < dropout_prob) {
Z
Zeng Jinle 已提交
44 45
      mask = 0;
      dest = 0;
46
    } else {
Z
Zeng Jinle 已提交
47
      mask = 1;
P
phlrain 已提交
48
      if (is_upscale_in_train) {
Z
Zeng Jinle 已提交
49
        dest = s / static_cast<T>(1.0f - dropout_prob);
P
phlrain 已提交
50
      } else {
Z
Zeng Jinle 已提交
51
        dest = s;
P
phlrain 已提交
52
      }
53 54 55
    }
    mask_data[idx] = mask;
    dst[idx] = dest;
56
  }
D
dzhwinter 已提交
57
}
58

59 60 61 62 63 64 65
template <typename T, typename MaskType, int VecSize>
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
                                          const float dropout_prob,
                                          const T* src, MaskType* mask_data,
                                          T* dst, bool is_upscale_in_train,
                                          uint64_t increment) {
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
66
  curandStatePhilox4_32_10_t state;
67
  curand_init(seed, idx, increment, &state);
68 69 70

  MaskType mask;
  T dest;
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  using LoadT = AlignedVector<T, VecSize>;
  using MaskLoadT = AlignedVector<MaskType, VecSize>;
  T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
  for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) {
    T src_vec[VecSize];
    LoadT* value = reinterpret_cast<LoadT*>(&src_vec);
    *value = *reinterpret_cast<const LoadT*>(&src[i]);
    float4 rand = curand_uniform4(&state);

    T dest_vec[VecSize];
    MaskType mask_vec[VecSize];

#pragma unroll
    for (int ii = 0; ii < VecSize; ii++) {
      if ((&rand.x)[ii] < dropout_prob) {
        dest_vec[ii] = 0;
        mask_vec[ii] = 0;
88
      } else {
89 90 91 92 93 94
        if (is_upscale_in_train) {
          dest_vec[ii] = src_vec[ii] * factor;
        } else {
          dest_vec[ii] = src_vec[ii];
        }
        mask_vec[ii] = 1;
95 96 97
      }
    }

98 99 100 101
    *(reinterpret_cast<LoadT*>(&dst[i])) =
        *reinterpret_cast<LoadT*>(&dest_vec[0]);
    *(reinterpret_cast<MaskLoadT*>(&mask_data[i])) =
        *reinterpret_cast<MaskLoadT*>(&mask_vec[0]);
Y
yaoxuefeng 已提交
102 103 104
  }
}

105 106 107
// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
K
Kexin Zhao 已提交
108
template <typename Place, typename T>
Y
Yu Yang 已提交
109
class GPUDropoutKernel : public framework::OpKernel<T> {
110 111 112
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
M
mapingshuo 已提交
113 114
    auto* seed =
        context.HasInput("Seed") ? context.Input<Tensor>("Seed") : nullptr;
115 116
    auto* y = context.Output<Tensor>("Out");
    y->mutable_data<T>(context.GetPlace());
K
Kexin Zhao 已提交
117
    float dropout_prob = context.Attr<float>("dropout_prob");
118

Z
Zeng Jinle 已提交
119
    auto& dropout_implementation =
P
phlrain 已提交
120
        context.Attr<std::string>("dropout_implementation");
Z
Zeng Jinle 已提交
121 122
    bool upscale_in_train = (dropout_implementation == "upscale_in_train");

Q
QI JUN 已提交
123
    auto& place = *context.template device_context<Place>().eigen_device();
124
    if (!context.Attr<bool>("is_test")) {
Z
Zeng Jinle 已提交
125 126 127
      int64_t x_numel = x->numel();
      auto stream = context.cuda_device_context().stream();

128
      auto* mask = context.Output<Tensor>("Mask");
Z
Zeng Jinle 已提交
129
      auto* mask_data = mask->mutable_data<uint8_t>(context.GetPlace());
D
dzhwinter 已提交
130 131 132
      size_t size = framework::product(mask->dims());
      auto* x_data = x->data<T>();
      auto* y_data = y->mutable_data<T>(context.GetPlace());
Z
Zeng Jinle 已提交
133
      if (dropout_prob == 1.0f) {
134 135 136 137
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
        PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemsetAsync(
            mask_data, 0, x_numel * sizeof(*mask_data), stream));
Z
Zeng Jinle 已提交
138 139
        return;
      }
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
      const auto& dev_ctx = context.cuda_device_context();
      platform::GpuLaunchConfig config =
          platform::GetGpuLaunchConfig1D(dev_ctx, size);

      // increment is used to set the args(offset) of curand_init, which defines
      // offset in subsequence.
      // The detail:
      // https://docs.nvidia.com/cuda/curand/device-api-overview.html
      // Increment should be at least the number of curand() random numbers used
      // in each thread to avoid the random number generated this time being the
      // same as the previous calls.
      uint64_t seed_data;
      uint64_t increment;
      int vec_size = VectorizedSize<T>(x_data);
      auto offset = ((x_numel - 1) / (config.block_per_grid.x *
                                      config.thread_per_block.x * vec_size) +
                     1) *
                    vec_size;
      int device_id = BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace())
                          .GetDeviceId();
      auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

163
      if (seed && platform::is_gpu_place(seed->place())) {
164 165 166 167 168 169 170 171
        framework::Tensor seed_cpu_tensor;
        TensorCopySync(*seed, platform::CPUPlace(), &seed_cpu_tensor);
        seed_data = static_cast<uint64_t>(seed_cpu_tensor.data<int>()[0]);
        increment = offset;
      } else if (gen_cuda->GetIsInitPy() && (!context.Attr<bool>("fix_seed"))) {
        auto seed_offset = gen_cuda->IncrementOffset(offset);
        seed_data = seed_offset.first;
        increment = seed_offset.second;
172
      } else {
173 174 175 176 177 178 179 180
        if (seed) {
          seed_data = *(seed->data<int>());
        } else {
          std::random_device rnd;
          seed_data = context.Attr<bool>("fix_seed") ? context.Attr<int>("seed")
                                                     : rnd();
        }
        increment = offset;
181 182
      }

183 184 185 186 187 188 189 190 191 192 193
      if (vec_size == 4 && size % 4 == 0) {
        VectorizedRandomGenerator<
            T, uint8_t,
            4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
            size, seed_data, dropout_prob, x_data, mask_data, y_data,
            upscale_in_train, increment);
      } else {
        RandomGenerator<T, uint8_t><<<config.block_per_grid,
                                      config.thread_per_block, 0, stream>>>(
            size, seed_data, dropout_prob, x_data, mask_data, y_data,
            upscale_in_train, increment);
Y
yaoxuefeng 已提交
194 195
      }

196
    } else {
197 198
      auto X = EigenMatrix<T>::Reshape(*x, 1);
      auto Y = EigenMatrix<T>::Reshape(*y, 1);
Z
Zeng Jinle 已提交
199
      if (upscale_in_train) {
P
phlrain 已提交
200 201 202 203
        Y.device(place) = X;
      } else {
        Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
      }
204
    }
205 206 207 208 209 210
  }
};

}  // namespace operators
}  // namespace paddle

X
Xinghai Sun 已提交
211
namespace ops = paddle::operators;
K
Kexin Zhao 已提交
212
namespace plat = paddle::platform;
Q
QI JUN 已提交
213
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
214
    dropout, ops::GPUDropoutKernel<plat::CUDADeviceContext, float>,
P
phlrain 已提交
215 216 217 218
    ops::GPUDropoutKernel<plat::CUDADeviceContext, plat::float16>,
    ops::GPUDropoutKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    dropout_grad, ops::DropoutGradKernel<plat::CUDADeviceContext, float>,
219
    ops::DropoutGradKernel<plat::CUDADeviceContext, plat::float16>,
P
phlrain 已提交
220
    ops::DropoutGradKernel<plat::CUDADeviceContext, double>);