planner.py 40.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import time
import random
import logging
from functools import reduce
from itertools import chain, product
from collections import OrderedDict

import numpy as np

import paddle
import paddle.distributed.auto_parallel as auto
from .cost_model import estimate_cost
from .dist_op import DistributedOperator
from .process_group import _g_process_group_map
from .process_group import ProcessGroup, get_process_group
from .completion import is_elementwise_like_op
from .operators.common import get_distributed_operator_impl_container
from .utils import update_op_dims_mapping_by_default_dist_impl
from .utils import update_op_dims_mapping_by_elementwise_like_dist_impl
35
from .utils import get_all_distributed_main_program
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
from .dist_context import DistributedContext, DistributedOperatorContext
from .dist_attribute import OperatorDistributedAttribute, TensorDistributedAttribute

paddle.enable_static()
paddle.seed(123)
random.seed(123)
np.random.seed(123)


class PlanFilter:
    @staticmethod
    def check_dims_mapping_for_tensor(process_mesh_topology, tensor_shape,
                                      dims_mapping):
        valid = True
        assert len(tensor_shape) == len(dims_mapping)

        for idx, dim_mapping in enumerate(dims_mapping):
            if dim_mapping != -1:
                if tensor_shape[idx] % process_mesh_topology[
                        dim_mapping] != 0 or dims_mapping.count(
                            dim_mapping) > 1:
                    valid = False
            if dim_mapping != -1 and process_mesh_topology[0] == 1:
                valid = False

        return valid

    @staticmethod
    def check_dims_mapping_for_op(op, op_dist_attr, vars):
        process_mesh = op_dist_attr.process_mesh
        assert process_mesh is not None, "The process mesh should not be None."
        for var_name in op.input_arg_names:
            dims_mapping = op_dist_attr.get_input_dims_mapping(var_name)
            if not PlanFilter.check_dims_mapping_for_tensor(
                    process_mesh.topology, vars[var_name].shape, dims_mapping):
                return False
            if vars[var_name].is_data and len(dims_mapping) > 1:
                for dim in dims_mapping[1:]:
                    if dim != -1:
                        return False

        for var_name in op.output_arg_names:
            dims_mapping = op_dist_attr.get_output_dims_mapping(var_name)
            if not PlanFilter.check_dims_mapping_for_tensor(
                    process_mesh.topology, vars[var_name].shape, dims_mapping):
                return False

        return True

    @staticmethod
    def check_dims_mapping_for_special_op(op, op_dist_attr, vars):
        if op.type == "layer_norm":
            bias_dims_mapping = op_dist_attr.get_input_dims_mapping(
                op.input("Bias")[0])
            scale_dims_mapping = op_dist_attr.get_input_dims_mapping(
                op.input("Scale")[0])
            x_dims_mapping = op_dist_attr.get_input_dims_mapping(
                op.input("X")[0])
            mean_dims_mapping = op_dist_attr.get_output_dims_mapping(
                op.output("Mean")[0])
            variance_dims_mapping = op_dist_attr.get_output_dims_mapping(
                op.output("Variance")[0])
            y_dims_mapping = op_dist_attr.get_output_dims_mapping(
                op.output("Y")[0])
            if x_dims_mapping != y_dims_mapping:
                return False

            if scale_dims_mapping[0] != x_dims_mapping[-1]:
                return False

            if bias_dims_mapping[0] != y_dims_mapping[-1]:
                return False

            if mean_dims_mapping[0] != x_dims_mapping[0]:
                return False

            if variance_dims_mapping[0] != x_dims_mapping[0]:
                return False

        return True


class PlanSpace:
    not_enum_ops = ["create_py_reader", "create_double_buffer_reader", "read"]
    special_vars = [
        "lod_tensor_blocking_queue_0", "create_py_reader_0", "double_buffer_0"
    ]

    @staticmethod
    def _enum_dims_mapping(process_mesh_topology, visited, path, depth, res,
                           tensor_shape):
        """Enumerate dims mapping of tensor by the given process_mesh_topology"""
        nums = list(range(-1, len(process_mesh_topology)))
        if depth == len(tensor_shape):
            valid = True
            for idx, item in enumerate(path):
                if item != -1:
                    if tensor_shape[idx] % process_mesh_topology[
                            item] != 0 or path.count(item) > 1:
                        valid = False
            if valid:
                res.append(copy.deepcopy(path))
            return

        for i in range(len(nums)):
            if not visited[i]:
                if i != 0:
                    visited[i] = True
                path.append(nums[i])
                PlanSpace._enum_dims_mapping(process_mesh_topology, visited,
                                             path, depth + 1, res, tensor_shape)
                visited[i] = False
                path.pop()

    @staticmethod
    def enum_process_mesh_topology(processes):
        """Enumerate all process meshes with the given processes."""
        assert processes >= 1, "The processes must be number and greater than 0."
        # compute divisors
        divisors = []
        for i in range(1, processes + 1):
            if processes % i == 0:
                divisors.append(i)

        # compute valid process mesh
        results = []
        for i in range(len(divisors) - 1, 0, -1):
            result = []
            result.append(divisors[i])
            if i == len(divisors) - 1:
                results.append(copy.deepcopy(result))
                continue

            j = 1
            while j < len(divisors):
                if len(result) == 1:
                    result.append(divisors[j])
                elif len(result) == 2:
                    if processes % (result[0] * result[1]) == 0:
                        if processes // (result[0] * result[1]) == 1:
                            results.append(copy.deepcopy(result))
                            break
                        else:
                            result.append(processes // (result[0] * result[1]))
                            results.append(copy.deepcopy(result))
                            result.pop(-1)
                            result.pop(-1)
                            j += 1
                    else:
                        if result[0] * result[1] < processes:
                            result.pop(-1)
                            j += 1
                        else:
                            break
        return results

    @staticmethod
    def _enum_valid_dist_attr_for_op(program, op, process_mesh):
        """Enumerate the valid distributed attribute for op based on the given process mesh."""
        vars = program.global_block().vars
        dims_mapping_dict = OrderedDict()
        op_valid_dist_attrs = []
        dist_op_impl_container = get_distributed_operator_impl_container(
            op.type)

        # enumerate all valid dims mapping of tensor when process mesh given
        for var_name in chain(op.input_arg_names, op.output_arg_names):
            visited = [
                False
                for _ in range(
                    len(list(range(-1, len(process_mesh.topology)))))
            ]
            depth = 0
            path = []
            dims_mapping_list = []
            PlanSpace._enum_dims_mapping(process_mesh.topology, visited, path,
                                         depth, dims_mapping_list,
                                         vars[var_name].shape)
            dims_mapping_dict[var_name] = copy.deepcopy(dims_mapping_list)

        # compose dims mapping
        composed_dims_mapping_list = list(
            product(
                *[dims_mapping_dict[key] for key in dims_mapping_dict.keys()]))
        for composed_dims_mapping in composed_dims_mapping_list:
            op_dist_attr = OperatorDistributedAttribute()
            op_dist_attr.process_mesh = process_mesh
            var_names = list(dims_mapping_dict.keys())

            for idx, dims_mapping in enumerate(composed_dims_mapping):
                if var_names[idx] in op.input_arg_names:
                    op_dist_attr.set_input_dims_mapping(var_names[idx],
                                                        dims_mapping)
                elif var_names[idx] in op.output_arg_names:
                    op_dist_attr.set_output_dims_mapping(var_names[idx],
                                                         dims_mapping)
                else:
                    raise ValueError(
                        "The {varname} is not input or output of op {op}.".
                        format(
                            varname='var_names[idx]', op='op'))

            dist_op = DistributedOperator(op, op_dist_attr)
            if dist_op_impl_container is None:
                if is_elementwise_like_op(op.type):
                    changed = True
                    valid = True
                    try:
                        changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
                            dist_op)
                    except Exception as e:
                        valid = False
                    if valid and not changed:
                        if PlanFilter.check_dims_mapping_for_op(
                                op, dist_op.dist_attr, vars
                        ) and PlanFilter.check_dims_mapping_for_special_op(
                                op, dist_op.dist_attr, vars):
                            dist_op.dist_attr.impl_idx = -1
                            op_valid_dist_attrs.append(dist_op.dist_attr)
                    continue
                else:
                    changed = True
                    valid = True
                    try:
                        changed = update_op_dims_mapping_by_default_dist_impl(
                            dist_op)
                    except Exception as e:
                        valid = False
                    if valid and not changed:
                        if PlanFilter.check_dims_mapping_for_op(
                                op, dist_op.dist_attr, vars
                        ) and PlanFilter.check_dims_mapping_for_special_op(
                                op, dist_op.dist_attr, vars):
                            dist_op.dist_attr.impl_idx = -2
                            op_valid_dist_attrs.append(dist_op.dist_attr)
                    continue

            # if op has distributed implements, find all valid dist attr of this op
            impls = dist_op_impl_container.get_impls()
            for idx, impl in enumerate(impls):
                if impl.is_auto_compatible(dist_op):
                    if PlanFilter.check_dims_mapping_for_op(
                            op, dist_op.dist_attr, vars):
                        dist_op.dist_attr.impl_idx = idx
                        op_valid_dist_attrs.append(dist_op.dist_attr)

        # set default dist attr for some special ops whose distributed attributes can not be enumerated
        if not op_valid_dist_attrs:
            op_dist_attr = OperatorDistributedAttribute()
            op_dist_attr.process_mesh = process_mesh
            dist_op = DistributedOperator(op, op_dist_attr)
            for var_name in op.input_arg_names:
                op_dist_attr.set_input_dims_mapping(
                    vars[var_name], [-1 for i in vars[var_name].shape])
            for var_name in op.output_arg_names:
                op_dist_attr.set_output_dims_mapping(
                    vars[var_name], [-1 for i in vars[var_name].shape])
            dist_op.dist_attr.impl_idx = -1
            op_valid_dist_attrs.append(dist_op.dist_attr)

        return op_valid_dist_attrs

    @staticmethod
    def enum_valid_dist_attr_for_program(program,
                                         process_mesh_topology,
                                         is_pipeline=False):
        """Enumerate valid distributed attributes for all ops in program."""
        valid_dist_attr_dict = OrderedDict()
        ops = program.global_block().ops
        vars = program.global_block().vars

        processes = reduce(lambda x, y: x * y, process_mesh_topology)
        global_group = [i for i in range(processes)]
        global_process_mesh = None
        pipeline_process_meshes = None

        # in the pipeline mode, there are some process meshes
        if is_pipeline:
            pipeline_stages = process_mesh_topology[-1]
            op_count_per_stage = len(ops) // pipeline_stages
            if len(process_mesh_topology) > 1:
                process_mesh_shape = process_mesh_topology[:-1]
                per_process_mesh_group = processes // pipeline_stages
                pipeline_process_meshes = [auto.ProcessMesh(mesh=np.array(global_group[i*per_process_mesh_group: \
                (i+1)*per_process_mesh_group]).reshape(process_mesh_shape).tolist()) for i in range(pipeline_stages)]
            elif len(process_mesh_topology) == 1:
                pipeline_process_meshes = [
                    auto.ProcessMesh(mesh=[i]) for i in range(pipeline_stages)
                ]
        else:
            if len(process_mesh_topology) > 1:
                global_process_mesh = auto.ProcessMesh(mesh=np.array(
                    global_group).reshape(process_mesh_topology).tolist())
            else:
                global_process_mesh = auto.ProcessMesh(mesh=global_group)

        # enumerate valid distributed attribute for each op in the program
        for idx, op in enumerate(ops):
            op_valid_dist_attrs = None
            op_process_mesh = global_process_mesh
            pipeline_stage = -1
            if pipeline_process_meshes is not None:
                pipeline_stage = idx // op_count_per_stage if idx // op_count_per_stage < len(
                    pipeline_process_meshes) else idx // op_count_per_stage - 1
                if pipeline_stage >= len(pipeline_process_meshes):
                    pipeline_stage = len(pipeline_process_meshes) - 1
                op_process_mesh = pipeline_process_meshes[pipeline_stage]

            if op.type in PlanSpace.not_enum_ops:
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = op_process_mesh
                for var_name in op.input_arg_names:
                    if var_name in PlanSpace.special_vars:
                        op_dist_attr.set_input_dims_mapping(var_name, [])
                    else:
                        dims_mapping = [-1 for i in vars[var_name].shape]
                        op_dist_attr.set_input_dims_mapping(var_name,
                                                            dims_mapping)

                for var_name in op.output_arg_names:
                    if var_name in PlanSpace.special_vars:
                        op_dist_attr.set_output_dims_mapping(var_name, [])
                    else:
                        dims_mapping = [-1 for i in vars[var_name].shape]
                        op_dist_attr.set_output_dims_mapping(var_name,
                                                             dims_mapping)
                op_valid_dist_attrs = [op_dist_attr]
                pipeline_stage = 0 if pipeline_stage != -1 else pipeline_stage
            else:
                op_valid_dist_attrs = PlanSpace._enum_valid_dist_attr_for_op(
                    program, op, op_process_mesh)

            assert op_valid_dist_attrs is not None, "Enumerate {} valid distributed attribute failed.".format(
                op)
            valid_dist_attr_dict[op.desc.id(
            )] = [op_valid_dist_attrs, pipeline_stage]

        return valid_dist_attr_dict, pipeline_process_meshes, global_process_mesh
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869


class SearchAlgorithm:
    def __init__(self, name):
        self._name = name

    @property
    def name(self):
        self.name = name

    def search(self):
        raise NotImplementedError("Please Implement this method in subclass.")


class MCMC(SearchAlgorithm):
    def __init__(self, serial_program_info, max_search_times=5):
        super(MCMC, self).__init__("mcmc")
        self._serial_program_info = serial_program_info
        self._max_search_times = max_search_times

    @property
    def serial_program_info(self):
        return self._serial_program_info

    @property
    def max_search_times(self):
        return self._max_search_times

    def make_special_op_unshard(self, op, ops, vars, dist_context,
                                valid_dist_attr_dict):
        if op.type == "softmax_with_cross_entropy":
            for var_name in op.input_arg_names:
                dims_mapping = dist_context.get_op_dist_attr_for_program(
                    op).get_input_dims_mapping(var_name)
                if dims_mapping != dist_context.get_tensor_dist_attr_for_program(
                        vars[var_name]).dims_mapping:
                    has_changed = False
                    for search_op in ops:
                        if var_name in search_op.output_arg_names:
                            op_dist_attr_list = valid_dist_attr_dict[
                                search_op.desc.id()][0]
                            for op_dist_attr in op_dist_attr_list:
                                if op_dist_attr.get_output_dims_mapping(
                                        var_name) == dims_mapping:
                                    dist_context.set_op_dist_attr_for_program(
                                        search_op, op_dist_attr)
                                    tensor_dist_attr = TensorDistributedAttribute(
                                    )
                                    tensor_dist_attr.process_mesh = op_dist_attr.process_mesh
                                    tensor_dist_attr.dims_mapping = op_dist_attr.get_output_dims_mapping(
                                        var_name)
                                    dist_context.set_tensor_dist_attr_for_program(
                                        vars[var_name], tensor_dist_attr)
                                    has_changed = True
                                    break
                        if has_changed:
                            break
                    if not has_changed:
                        raise ValueError(
                            "Change softmax_with_cross_entropy dist attr failed")

    def init_program(self, valid_dist_attr_dict, program,
                     pipeline_process_meshes, global_process_mesh):
        ops = program.global_block().ops
        vars = program.global_block().vars
        new_dist_context = DistributedContext()

        for op in ops:
            op_valid_dist_attr_list = valid_dist_attr_dict[op.desc.id()][0]
            random_op_dist_attr = np.random.randint(
                len(op_valid_dist_attr_list))
            init_op_dist_attr = op_valid_dist_attr_list[random_op_dist_attr]
            new_dist_context.set_op_dist_attr_for_program(op, init_op_dist_attr)
            for var_name in op.input_arg_names:
                if var_name == "lod_tensor_blocking_queue_0":
                    continue
                if new_dist_context.get_tensor_dist_attr_for_program(vars[
                        var_name]) is None:
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.process_mesh = init_op_dist_attr.process_mesh
                    tensor_dist_attr.dims_mapping = init_op_dist_attr.get_input_dims_mapping(
                        var_name)
                    new_dist_context.set_tensor_dist_attr_for_program(
                        vars[var_name], tensor_dist_attr)

            for var_name in op.output_arg_names:
                tensor_dist_attr = TensorDistributedAttribute()
                tensor_dist_attr.process_mesh = init_op_dist_attr.process_mesh
                tensor_dist_attr.dims_mapping = init_op_dist_attr.get_output_dims_mapping(
                    var_name)
                new_dist_context.set_tensor_dist_attr_for_program(
                    vars[var_name], tensor_dist_attr)

            # NOTE: this is a temporary solution to make softmax_with_cross_entropy unshard
            self.make_special_op_unshard(op, ops, vars, new_dist_context,
                                         valid_dist_attr_dict)

        # add process meshes to distributed context
        if global_process_mesh is not None:
            new_dist_context.add_process_mesh(global_process_mesh)
        elif pipeline_process_meshes is not None:
            for process_mesh in pipeline_process_meshes:
                new_dist_context.add_process_mesh(process_mesh)

        return new_dist_context

    def estimate_searched_strategy_cost(self,
                                        dist_context,
                                        pipeline_process_meshes=None):
        cost = None
        # get all distributed programs
        all_dist_main_program = get_all_distributed_main_program(
            self.serial_program_info, dist_context)
        pipeline_config = [
            process_mesh.processes for process_mesh in pipeline_process_meshes
        ] if pipeline_process_meshes is not None else None
        microbatch_size = 1
        for program in all_dist_main_program:
            searched_batch_size = False
            for var in program.list_vars():
                if var.is_data and "@RESHARD" in var.name:
                    microbatch_size = var.shape[0]
                    searched_batch_size = True
                    break
            if searched_batch_size:
                break

        from .utils import get_standalone_cost_data
        standalone_cost_data = get_standalone_cost_data(all_dist_main_program)

        # cost model does not support cluster argument
        cost = estimate_cost(
            all_dist_main_program,
            cluster=None,
            pipeline_config=pipeline_config,
            standalone_cost_data=standalone_cost_data,
            batch_size=microbatch_size)

        return cost

    def set_tensor_dist_attr(self, op, op_dist_attr, vars, dist_context):
        # set output tensor distributed attribute
        for var_name in op.output_arg_names:
            process_mesh = op_dist_attr.process_mesh
            tensor_dist_attr = TensorDistributedAttribute()
            tensor_dist_attr.process_mesh = process_mesh
            tensor_dist_attr.dims_mapping = op_dist_attr.get_output_dims_mapping(
                var_name)
            dist_context.set_tensor_dist_attr_for_program(vars[var_name],
                                                          tensor_dist_attr)

        # set input tensor distributed attribute if input is data or parameter
        for var_name in op.input_arg_names:
            if vars[var_name].is_parameter or vars[var_name].is_data:
                process_mesh = op_dist_attr.process_mesh
                tensor_dist_attr = TensorDistributedAttribute()
                tensor_dist_attr.process_mesh = process_mesh
                tensor_dist_attr.dims_mapping = op_dist_attr.get_input_dims_mapping(
                    var_name)
                dist_context.set_tensor_dist_attr_for_program(vars[var_name],
                                                              tensor_dist_attr)

    def change_process_mesh(self, op, changed_process_mesh, vars, dist_context):
        dist_context.get_op_dist_attr_for_program(
            op).process_mesh = changed_process_mesh
        for var_name in op.output_arg_names:
            dist_context.get_tensor_dist_attr_for_program(vars[
                var_name]).process_mesh = changed_process_mesh
        for var_name in op.input_arg_names:
            if vars[var_name].is_parameter or vars[var_name].is_data:
                dist_context.get_tensor_dist_attr_for_program(vars[
                    var_name]).process_mesh = changed_process_mesh

    def search_once(self,
                    program,
                    valid_dist_attr_dict,
                    dist_context,
                    pipeline_process_meshes=None):
        raw_ops = program.global_block().ops
        ops = []
        for op in raw_ops:
            if op.type not in PlanSpace.not_enum_ops:
                ops.append(op)
        assert ops, "The ops of program have no distributed attributes."
        vars = program.global_block().vars
        new_dist_context = copy.deepcopy(dist_context)
        new_dist_context._dist_op_context = DistributedOperatorContext()
        new_valid_dist_attr_dict = None
        random_selected_op_idx = np.random.randint(len(ops))
        selected_op = ops[random_selected_op_idx]
        op_valid_dist_attr_list = valid_dist_attr_dict[selected_op.desc.id()][0]
        pipeline_stage = valid_dist_attr_dict[selected_op.desc.id()][1]
        random_selected_dist_attr_idx = np.random.randint(
            len(op_valid_dist_attr_list))
        selected_op_dist_attr = copy.deepcopy(op_valid_dist_attr_list[
            random_selected_dist_attr_idx])

        start_idx = ops[0].desc.id()
        if pipeline_stage > -1:
            # in pipeline mode, the above phase just select a dims mapping
            # 0 represents not changed, 1 represents to be the same with before stage, 2 represents to be the same with the latter stage
            new_valid_dist_attr_dict = copy.deepcopy(valid_dist_attr_dict)
            changed_mode = np.random.randint(3)
            if changed_mode == 0:
                # not change the process mesh, just change dims mapping
                new_dist_context.set_op_dist_attr_for_program(
                    selected_op, selected_op_dist_attr)
                self.set_tensor_dist_attr(selected_op, selected_op_dist_attr,
                                          vars, new_dist_context)

            elif changed_mode == 1:
                changed_stage = pipeline_stage - 1
                if changed_stage == -1 or random_selected_op_idx == len(ops) - 1 or \
                (random_selected_op_idx + 1 == len(ops) - 1 and new_valid_dist_attr_dict[ops[random_selected_op_idx + 1].desc.id()][1] == pipeline_stage + 1 ):
                    new_dist_context.set_op_dist_attr_for_program(
                        selected_op, selected_op_dist_attr)
                    self.set_tensor_dist_attr(selected_op,
                                              selected_op_dist_attr, vars,
                                              new_dist_context)

                else:
                    selected_op_process_mesh = pipeline_process_meshes[
                        pipeline_stage]
                    next_op_id = ops[random_selected_op_idx + 1].desc.id()
                    if new_valid_dist_attr_dict[next_op_id][
                            1] == pipeline_stage + 1 and random_selected_op_idx + 1 != len(
                                ops) - 1:
                        new_valid_dist_attr_dict[next_op_id][1] = pipeline_stage
                        for op_dist_attr in new_valid_dist_attr_dict[
                                next_op_id][0]:
                            op_dist_attr.process_mesh = selected_op_process_mesh
                        # set next op dist attr in the discontext and output/input tensor process mesh
                        self.change_process_mesh(
                            ops[random_selected_op_idx + 1],
                            selected_op_process_mesh, vars, new_dist_context)

                    # change the selected op stage and output dist attr
                    new_valid_dist_attr_dict[selected_op.desc.id()][
                        1] = changed_stage
                    new_process_mesh = pipeline_process_meshes[changed_stage]
                    selected_op_dist_attr.process_mesh = new_process_mesh
                    for op_dist_attr in new_valid_dist_attr_dict[
                            selected_op.desc.id()][0]:
                        op_dist_attr.process_mesh = new_process_mesh
                    new_dist_context.set_op_dist_attr_for_program(
                        selected_op, selected_op_dist_attr)

                    self.set_tensor_dist_attr(selected_op,
                                              selected_op_dist_attr, vars,
                                              new_dist_context)

                    # change the pre op stage
                    for idx in range(random_selected_op_idx - 1, -1, -1):
                        stage = new_valid_dist_attr_dict[ops[idx].desc.id()][1]
                        valid_dist_attr_list = new_valid_dist_attr_dict[ops[
                            idx].desc.id()][0]
                        new_process_mesh = pipeline_process_meshes[
                            changed_stage]
                        if stage == changed_stage + 1:
                            new_valid_dist_attr_dict[ops[idx].desc.id()][
                                1] = changed_stage
                            for op_dist_attr in valid_dist_attr_list:
                                op_dist_attr.process_mesh = new_process_mesh
                            new_dist_context.get_op_dist_attr_for_program(ops[
                                idx]).process_mesh = new_process_mesh
                            # change process mesh of the output and input tensor
                            self.change_process_mesh(ops[idx], new_process_mesh,
                                                     vars, new_dist_context)
                        else:
                            break

            else:
                changed_stage = pipeline_stage + 1
                if changed_stage == len(
                        pipeline_process_meshes) or random_selected_op_idx == 0 or \
                        (new_valid_dist_attr_dict[ops[random_selected_op_idx - 1].desc.id()][1] == pipeline_stage - 1 and (random_selected_op_idx == 1)):
                    new_dist_context.set_op_dist_attr_for_program(
                        selected_op, selected_op_dist_attr)
                    self.set_tensor_dist_attr(selected_op,
                                              selected_op_dist_attr, vars,
                                              new_dist_context)

                else:
                    selected_op_process_mesh = pipeline_process_meshes[
                        pipeline_stage]
                    pre_op_id = ops[random_selected_op_idx - 1].desc.id()
                    if new_valid_dist_attr_dict[pre_op_id][
                            1] == pipeline_stage - 1 and random_selected_op_idx != 1:
                        new_valid_dist_attr_dict[pre_op_id][1] = pipeline_stage
                        for op_dist_attr in new_valid_dist_attr_dict[pre_op_id][
                                0]:
                            op_dist_attr.process_mesh = selected_op_process_mesh
                        # set pre op dist attr in the discontext and output tensor process mesh
                        self.change_process_mesh(
                            ops[random_selected_op_idx - 1],
                            selected_op_process_mesh, vars, new_dist_context)

                    # change the selected op stage and output tensor dist attr
                    new_valid_dist_attr_dict[selected_op.desc.id()][
                        1] = changed_stage
                    new_process_mesh = pipeline_process_meshes[changed_stage]
                    selected_op_dist_attr.process_mesh = new_process_mesh
                    for op_dist_attr in new_valid_dist_attr_dict[
                            selected_op.desc.id()][0]:
                        op_dist_attr.process_mesh = new_process_mesh
                    new_dist_context.set_op_dist_attr_for_program(
                        selected_op, selected_op_dist_attr)
                    self.set_tensor_dist_attr(selected_op,
                                              selected_op_dist_attr, vars,
                                              new_dist_context)

                    # change the next op stage
                    for idx in range(random_selected_op_idx + 1, len(ops)):
                        stage = new_valid_dist_attr_dict[ops[idx].desc.id()][1]
                        valid_dist_attr_list = new_valid_dist_attr_dict[ops[
                            idx].desc.id()][0]
                        new_process_mesh = pipeline_process_meshes[
                            changed_stage]
                        if stage == changed_stage - 1:
                            new_valid_dist_attr_dict[ops[idx].desc.id()][
                                1] = changed_stage
                            for op_dist_attr in valid_dist_attr_list:
                                op_dist_attr.process_mesh = new_process_mesh

                            new_dist_context.get_op_dist_attr_for_program(ops[
                                idx]).process_mesh = new_process_mesh
                            # change the output tensor dist attr
                            self.change_process_mesh(ops[idx], new_process_mesh,
                                                     vars, new_dist_context)
                        else:
                            break
        else:
            new_dist_context.set_op_dist_attr_for_program(selected_op,
                                                          selected_op_dist_attr)
            self.set_tensor_dist_attr(selected_op, selected_op_dist_attr, vars,
                                      new_dist_context)

        for op in ops:
            # make softmax_with_cross_entropy unshard
            if op.type == "softmax_with_cross_entropy":
                self.make_special_op_unshard(op, ops, vars, new_dist_context,
                                             valid_dist_attr_dict)
                break

        if new_valid_dist_attr_dict is None:
            return valid_dist_attr_dict, new_dist_context
        else:
            return new_valid_dist_attr_dict, new_dist_context

    def _search_core(self,
                     valid_dist_attr_dict,
                     init_dist_context,
                     pipeline_process_meshes=None):
        times = 0
        best_dist_context = init_dist_context
        cost = self.estimate_searched_strategy_cost(
            init_dist_context, pipeline_process_meshes).runtime
        min_cost = cost
        while times < self.max_search_times:
            times += 1
            new_dist_context = self.search_once(
                self.serial_program_info.train_program, valid_dist_attr_dict,
                best_dist_context, pipeline_process_meshes)[1]
            cur_cost = self.estimate_searched_strategy_cost(
                new_dist_context, pipeline_process_meshes).runtime
            if (min_cost - cur_cost) > 0:
                best_dist_context = copy.deepcopy(new_dist_context)
                min_cost = cur_cost
                times = 0
        return best_dist_context, min_cost

    def search(self):
        logging.info("Start MCMC searching.")
        start_time = time.time()
        train_program = self.serial_program_info.train_program
        cluster = self.serial_program_info.cluster
        processes = paddle.distributed.get_world_size(
        ) if cluster is None else len(cluster.get_all_devices("GPU"))
        assert processes > 0, "Get process failed."

        process_mesh_topology_list = PlanSpace.enum_process_mesh_topology(
            processes)
        searched_dist_context = None
        min_cost = None

        searched_pipeline_dist_context = None
        pipeline_min_cost = None
        for process_mesh_topology in process_mesh_topology_list:
            logging.info(
                "MCMC search: search process mesh {} with pipeline mode.".
                format(process_mesh_topology))
            valid_dist_attr_dict, pipeline_process_meshes, global_process_mesh = PlanSpace.enum_valid_dist_attr_for_program(
                train_program, process_mesh_topology, True)
            init_dist_context = self.init_program(
                valid_dist_attr_dict, train_program, pipeline_process_meshes,
                global_process_mesh)
            best_dist_context, cost = self._search_core(valid_dist_attr_dict,
                                                        init_dist_context,
                                                        pipeline_process_meshes)
            logging.info(
                "MCMC search: the min cost is {} in the process mesh {} with pipeline mode.".
                format(cost, process_mesh_topology))
            best_dist_context._dist_op_context = DistributedOperatorContext()
            pipeline_min_cost = cost if pipeline_min_cost is None else pipeline_min_cost
            searched_pipeline_dist_context = best_dist_context if searched_pipeline_dist_context is None else searched_pipeline_dist_context
            if pipeline_min_cost > cost:
                searched_pipeline_dist_context = best_dist_context
                pipeline_min_cost = cost

        searched_non_pipeline_dist_context = None
        non_pipeline_min_cost = None
        for process_mesh_topology in process_mesh_topology_list:
            # if process_mesh_topology shape is 3, include pipeline mode by default
            if len(process_mesh_topology) == 3:
                continue
            logging.info(
                "MCMC search: search process mesh {} without pipeline mode.".
                format(process_mesh_topology))
            valid_dist_attr_dict, pipeline_process_meshes, global_process_mesh = PlanSpace.enum_valid_dist_attr_for_program(
                train_program, process_mesh_topology, False)
            init_dist_context = self.init_program(
                valid_dist_attr_dict, train_program, pipeline_process_meshes,
                global_process_mesh)
            best_dist_context, cost = self._search_core(valid_dist_attr_dict,
                                                        init_dist_context,
                                                        pipeline_process_meshes)
            logging.info(
                "MCMC search: the min cost is {} in the process mesh {} without pipeline mode.".
                format(cost, process_mesh_topology))
            best_dist_context._dist_op_context = DistributedOperatorContext()
            non_pipeline_min_cost = cost if non_pipeline_min_cost is None else non_pipeline_min_cost
            searched_non_pipeline_dist_context = best_dist_context if searched_non_pipeline_dist_context is None else searched_non_pipeline_dist_context
            if non_pipeline_min_cost > cost:
                searched_non_pipeline_dist_context = best_dist_context
                non_pipeline_min_cost = cost

        if non_pipeline_min_cost > pipeline_min_cost:
            searched_dist_context = searched_pipeline_dist_context
            min_cost = pipeline_min_cost
            logging.info(
                "Better set FLAGS_benchmark=1 to avoid hang problem in the pipeline mode."
            )
        else:
            searched_dist_context = searched_non_pipeline_dist_context
            min_cost = non_pipeline_min_cost

        # rebuild g_process_group
        pg0 = get_process_group(0)
        for process_mesh in searched_dist_context._process_meshes:
            pg0.add_ranks(process_mesh.processes)
        end_time = time.time()
        logging.info(
            "End MCMC searching: the min cost is {} and the search time is {}s.".
            format(min_cost, end_time - start_time))
        return searched_dist_context, min_cost


class Planner:
    def __init__(self, serial_program_info, algorithm_config=None):
        self._serial_program_info = serial_program_info
        self._algorithm_config = algorithm_config
        self._algorithm_searcher = self.create_algorithm_searcher(
            algorithm_config)

    @property
    def serial_program_info(self):
        return self._serial_program_info

    @property
    def algorithm_config(self):
        return self._algorithm_config

    @property
    def algorithm_searcher(self):
        return self._algorithm_searcher

    def create_algorithm_searcher(self, algorithm_config):
        name = algorithm_config.get("name", None)
        assert name is not None, "Invalid algorithm config."

        algorithm_searcher = None
        if name == "mcmc":
            # NOTE: Only GPU clusters are supported now.
            max_search_times = algorithm_config.get("max_search_times", None)
            algorithm_searcher = MCMC(
                self.serial_program_info,
                max_search_times) if max_search_times is not None else MCMC(
                    self.serial_program_info)
        else:
            raise NotImplementedError(
                "Other search algorithms have not been supported now.")

        return algorithm_searcher

    def search(self):
        return self.algorithm_searcher.search()