layer_helper.py 5.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3
import copy
import itertools

Y
Yu Yang 已提交
4 5 6 7 8
import paddle.v2.framework.core as core

from paddle.v2.framework.framework import Variable, g_program, \
    g_init_program

Y
Yu Yang 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

def unique_name(prefix):
    uid = core.unique_integer()  # unique during whole process.
    return "_".join([prefix, str(uid)])


class LayerHelper(object):
    def __init__(self, layer_type, **kwargs):
        self.kwargs = kwargs
        self.layer_type = layer_type
        name = self.kwargs.get('name', None)
        if name is None:
            self.kwargs['name'] = unique_name(self.layer_type)

    @property
    def name(self):
        return self.kwargs['name']

    @property
    def program(self):
        prog = self.kwargs.get('program', None)
        if prog is None:
            return g_program
        else:
            return prog

Q
QI JUN 已提交
35 36 37 38 39 40 41 42
    @property
    def init_program(self):
        prog = self.kwargs.get('init_program', None)
        if prog is None:
            return g_init_program
        else:
            return prog

Y
Yu Yang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    def append_op(self, *args, **kwargs):
        return self.program.current_block().append_op(*args, **kwargs)

    def multiple_input(self, input_param_name='input'):
        inputs = self.kwargs.get(input_param_name, [])
        type_error = TypeError(
            "Input of {0} layer should be Variable or sequence of Variable".
            format(self.layer_type))
        if isinstance(inputs, Variable):
            inputs = [inputs]
        elif not isinstance(inputs, list) and not isinstance(inputs, tuple):
            raise type_error
        else:
            for each in inputs:
                if not isinstance(each, Variable):
                    raise type_error
        return inputs

    def input(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        if len(inputs) != 1:
            raise "{0} layer only takes one input".format(self.layer_type)
        return inputs[0]

    @property
    def param_attr(self):
        default = {
            'name': None,
            'init_attr': {
                'type': 'uniform_random',
                'min': -1.0,
                'max': 1.0
            }
        }
        actual = self.kwargs.get('param_attr', None)
        return actual if actual is not None else default

Q
QI JUN 已提交
80
    def bias_attr(self):
81 82
        bias_attr = self.kwargs.get('bias_attr', None)
        if bias_attr is True:
Y
Yu Yang 已提交
83 84 85 86
            bias_attr = {
                'name': None,
                'init_attr': {
                    'type': 'fill_constant',
Q
QI JUN 已提交
87
                    'value': 0.0
Y
Yu Yang 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                }
            }
        return bias_attr

    def multiple_param_attr(self, length):
        param_attr = self.param_attr
        if isinstance(param_attr, dict):
            param_attr = [param_attr]

        if len(param_attr) != 1 and len(param_attr) != length:
            raise ValueError("parameter number mismatch")
        elif len(param_attr) == 1 and length != 1:
            tmp = [None] * length
            for i in xrange(length):
                tmp[i] = copy.deepcopy(param_attr[0])
            param_attr = tmp
        return param_attr

    def iter_inputs_and_params(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        param_attrs = self.multiple_param_attr(len(inputs))
        for ipt, param_attr in itertools.izip(inputs, param_attrs):
            yield ipt, param_attr

    def input_dtype(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        dtype = None
        for each in inputs:
            if dtype is None:
                dtype = each.data_type
            elif dtype != each.data_type:
                raise ValueError("Data Type mismatch")
        return dtype

    def create_parameter(self, attr, shape, dtype, suffix='w'):
        if attr['name'] is None:
            attr['name'] = unique_name(".".join([self.name, suffix]))
Q
QI JUN 已提交
125
        self.init_program.global_block().create_parameter(
Q
QI JUN 已提交
126
            dtype=dtype, shape=shape, **attr)
Q
QI JUN 已提交
127 128
        return self.program.global_block().create_parameter(
            name=attr['name'], dtype=dtype, shape=shape)
Y
Yu Yang 已提交
129 130 131

    def create_tmp_variable(self, dtype):
        return self.program.current_block().create_var(
Q
QI JUN 已提交
132 133 134
            name=unique_name(".".join([self.name, 'tmp'])),
            dtype=dtype,
            persistable=False)
Y
Yu Yang 已提交
135

Y
Yu Yang 已提交
136 137 138
    def create_variable(self, *args, **kwargs):
        return self.program.current_block().create_var(*args, **kwargs)

Y
Yu Yang 已提交
139
    def create_global_variable(self, *args, **kwargs):
Q
QI JUN 已提交
140 141
        return self.program.global_block().create_var(
            *args, persistable=False, **kwargs)
Y
Yu Yang 已提交
142 143

    def append_bias_op(self, input_var):
144
        size = list(input_var.shape[1:])
Q
QI JUN 已提交
145
        bias_attr = self.bias_attr()
Y
Yu Yang 已提交
146 147
        if not bias_attr:
            return input_var
148

Y
Yu Yang 已提交
149
        b = self.create_parameter(
150
            attr=bias_attr, shape=size, dtype=input_var.data_type, suffix='b')
Y
Yu Yang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        tmp = self.create_tmp_variable(dtype=input_var.data_type)
        self.append_op(
            type='elementwise_add',
            inputs={'X': [input_var],
                    'Y': [b]},
            outputs={'Out': [tmp]})
        return tmp

    def append_activation(self, input_var):
        act = self.kwargs.get('act', None)
        if act is None:
            return input_var
        if isinstance(act, basestring):
            act = {'type': act}
        tmp = self.create_tmp_variable(dtype=input_var.data_type)
        act_type = act.pop('type')
        self.append_op(
            type=act_type,
            inputs={"X": [input_var]},
            outputs={"Y": [tmp]},
            attrs=act)
        return tmp