test_lambv2_op.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
from paddle.fluid import core
from paddle.fluid.op import Operator
import paddle
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
import paddle.fluid as fluid
import paddle.fluid.layers as layers


class LAMBOptimizer(paddle.optimizer.Lamb):
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, fluid.framework.Block)
        block.program._use_lamb = True

        m = moment1 = self._get_accumulator(self._moment1_acc_str,
                                            param_and_grad[0])
        v = self._get_accumulator(self._moment2_acc_str, param_and_grad[0])
        beta_1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                               param_and_grad[0])
        beta_2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                               param_and_grad[0])

        beta_1 = layers.fill_constant(
            dtype='float32', shape=[1], value=self._beta1, name='lamb_beta_1')
        beta_2 = layers.fill_constant(
            dtype='float32', shape=[1], value=self._beta2, name='lamb_beta_2')
        epsilon = layers.fill_constant(
            dtype='float32', shape=[1], value=self._epsilon, name='epsilon')

        one = paddle.ones(shape=[1]).astype('float32')
        zero = paddle.zeros(shape=[1]).astype('float32')

        next_m = paddle.multiply(m, beta_1) + paddle.multiply(param_and_grad[1],
                                                              one - beta_1)
        next_v = paddle.multiply(v, beta_2) + paddle.multiply(
            paddle.pow(param_and_grad[1], 2), one - beta_2)

        beta1_correction = one - beta_1_pow_acc
        beta2_correction = one - beta_2_pow_acc

        next_m_unbiased = next_m / beta1_correction
        next_v_unbiased = next_v / beta2_correction

        update = next_m_unbiased / (paddle.sqrt(next_v_unbiased) + epsilon)

        if self._exclude_from_weight_decay_fn is not None and self._exclude_from_weight_decay_fn(
                param_and_grad[0]):
            self._lamb_weight_decay = 0.0
        update += self._lamb_weight_decay * param_and_grad[0]

        w_norm = paddle.norm(param_and_grad[0], p=2)
        g_norm = paddle.norm(update, p=2)

        learning_rate = self._create_param_lr(param_and_grad)

        ratio = paddle.where(
            paddle.greater_than(w_norm, zero),
            paddle.where(
                paddle.greater_than(g_norm, zero), (w_norm / g_norm), one), one)
        update_with_lr = ratio * learning_rate * update
        next_param = param_and_grad[0] - update_with_lr

        beta_1_pow_acc *= beta_1
        beta_2_pow_acc *= beta_2

        paddle.assign(next_m, m)
        paddle.assign(next_v, v)
        paddle.assign(next_param, param_and_grad[0])

        return None
88 89 90 91


class TestLambOpV2(unittest.TestCase):
    def test_lamb_op(self):
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        shape = [2, 4, 8, 8]
        data = paddle.to_tensor(np.random.random(size=shape).astype("float32"))
        conv = paddle.nn.Conv2D(4, 6, (3, 3))
        data = conv(data)
        loss = paddle.mean(data)
        opt = paddle.optimizer.Lamb(
            learning_rate=1e-5, epsilon=1e-8, parameters=conv.parameters())
        loss.backward()
        opt.minimize(loss)

        assert loss.numpy() is not None


class TestLambOpWithCombinedOp(unittest.TestCase):
    def test_lamb_op_with_multi_steps(self):
107
        paddle.enable_static()
108 109 110 111 112 113 114 115 116 117 118 119

        def _build_static_model(main, startup, seed=100):
            with fluid.program_guard(main, startup):
                main.random_seed = seed
                startup.random_seed = seed
                x = fluid.layers.data(name='X', shape=[13], dtype='float32')
                y = fluid.layers.data(name='Y', shape=[1], dtype='float32')
                prediction = fluid.layers.fc(input=x, size=1, act=None)
                loss = fluid.layers.square_error_cost(input=prediction, label=y)
                avg_loss = fluid.layers.mean(loss)
            return avg_loss

120
        place = fluid.CPUPlace()
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        num_steps = 10

        for i in range(num_steps):
            feed_x = np.random.random(size=(10, 13)).astype('float32')
            feed_y = np.random.random(size=(10, 1)).astype('float32')

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program, startup_program):
                avg_loss = _build_static_model(main_program, startup_program)
                lamb_kernel = paddle.optimizer.Lamb(learning_rate=0.2)
                lamb_kernel.minimize(avg_loss)

            executor = fluid.Executor(place)
            executor.run(startup_program)
            output = executor.run(program=main_program,
                                  feed={'X': feed_x,
                                        'Y': feed_y},
                                  fetch_list=[avg_loss.name])

            main = fluid.Program()
            startup = fluid.Program()
            with fluid.program_guard(main, startup):
                loss = _build_static_model(main, startup)
                lamb = LAMBOptimizer(learning_rate=0.2)
                lamb.minimize(loss)

            exe = fluid.Executor(place)
            exe.run(startup)
            out = exe.run(program=main,
                          feed={'X': feed_x,
                                'Y': feed_y},
                          fetch_list=[loss.name])

            self.assertTrue(np.allclose(out, output))
156 157 158 159


if __name__ == "__main__":
    unittest.main()