lenet.py 1.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

L
LielinJiang 已提交
15 16
import paddle
import paddle.nn as nn
17 18 19 20

__all__ = ['LeNet']


L
LielinJiang 已提交
21
class LeNet(nn.Layer):
22 23 24 25 26 27 28 29 30 31
    """LeNet model from
    `"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_

    Args:
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                            will not be defined. Default: 10.

    Examples:
        .. code-block:: python

32
            from paddle.vision.models import LeNet
33 34 35 36

            model = LeNet()
    """

L
LielinJiang 已提交
37
    def __init__(self, num_classes=10):
38 39
        super(LeNet, self).__init__()
        self.num_classes = num_classes
L
LielinJiang 已提交
40 41
        self.features = nn.Sequential(
            nn.Conv2d(
42
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
43 44 45
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(
46
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
47 48
            nn.ReLU(),
            nn.MaxPool2d(2, 2))
49 50

        if num_classes > 0:
L
LielinJiang 已提交
51 52
            self.fc = nn.Sequential(
                nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear(84, 10))
53 54 55 56 57

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
L
LielinJiang 已提交
58
            x = paddle.flatten(x, 1)
59 60
            x = self.fc(x)
        return x