anakin_subgraph_pass.cc 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/inference/anakin/op_teller.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace inference {
namespace analysis {

using framework::ir::Node;

std::vector<std::string> ExtractAnakinParameters(
    const std::unordered_set<Node *> &nodes);

std::unique_ptr<framework::ir::Graph> analysis::AnakinSubgraphPass::ApplyImpl(
    std::unique_ptr<framework::ir::Graph> graph) const {
  framework::ir::FusePassBase::Init("anakin_subgraph_pass", graph.get());

  auto teller = [](const framework::ir::Node *node) {
    if (!node->IsOp() || !node->Op()) return false;
    return anakin::OpTeller::Global().Tell(node->Op()->Type(), *node->Op());
  };

  SubGraphFuser fuser(graph.get(), teller, 0);
  fuser();

  for (auto *node : graph->Nodes()) {
    if (node->IsOp() && !Agent(node).subgraph()->empty()) {
      CreateAnakinOp(node, graph.get());
      std::unordered_set<const Node *> nodes2remove(
          Agent(node).subgraph()->begin(), Agent(node).subgraph()->end());
      framework::ir::GraphSafeRemoveNodes(graph.get(), nodes2remove);
    }
  }

  std::unordered_set<const Node *> nodes2remove;
  for (auto *node : graph->Nodes()) {
    if (node->IsOp() && Agent(node).deleted()) {
      nodes2remove.insert(node);
    }
  }
  framework::ir::GraphSafeRemoveNodes(graph.get(), nodes2remove);

  return graph;
}

std::string GenerateAnakinEngineKey(
    const std::set<std::string> &engine_inputs,
    const std::set<std::string> &engine_outputs) {
  std::string engine_hash_key = "";
  for (auto name : engine_inputs) {
    engine_hash_key += name;
  }
  for (auto name : engine_outputs) {
    engine_hash_key += name;
  }
  auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
  return engine_key;
}

void AnakinSubgraphPass::CreateAnakinOp(framework::ir::Node *node,
                                        Graph *graph) const {
  auto *op_desc = node->Op();
  auto &subgraph = *Agent(node).subgraph();
  PADDLE_ENFORCE(!subgraph.empty());

  framework::ProgramDesc *program_desc =
      Get<framework::ProgramDesc *>("program");
  // Add new block for TensorRTEngineOP
  const framework::BlockDesc &main_block =
      program_desc->Block(framework::kRootBlockIndex);
  // const framework::BlockDesc& main_block = program_desc->Block(0);
  framework::BlockDesc *new_block = program_desc->AppendBlock(main_block);

  // An fake block desc.
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);
  string::PrettyLogDetail("---  detect a sub-graph with %d nodes",
                          subgraph.size());

  for (auto *node : subgraph) {
    auto *new_block_op = new_block->AppendOp();
    auto *op = block_desc.AppendOp();
    *new_block_op->Proto() = *node->Op()->Proto();
    *op->Proto() = *node->Op()->Proto();
  }

  // Then, we will use the input_names_with_id and output_names_with_id to
  // generate the eigine key.
  // So, We use set instead of unordered_set here to ensure that the engine key
  // is unique.
  std::set<std::string> input_names;
  std::set<std::string> input_names_with_id;
  for (auto *x : node->inputs) {
    input_names.insert(x->Name());
    input_names_with_id.insert(x->Name() + std::to_string(x->id()));
  }
  op_desc->SetInput(
      "Xs", std::vector<std::string>(input_names.begin(), input_names.end()));

  std::set<std::string> output_names;
  std::set<std::string> output_names_with_id;
  for (auto *x : node->outputs) {
    output_names.insert(x->Name());
    output_names_with_id.insert(x->Name() + std::to_string(x->id()));
  }

  op_desc->SetOutput(
      "Ys", std::vector<std::string>(output_names.begin(), output_names.end()));
  op_desc->SetType("anakin_engine");

  std::unordered_map<std::string, std::string> output_name_map;

  // The following procedure is used to rename all the intermediate
  // variables and the output variables of the subgraph.
  // Why we do this?
  // During the transition from fluid OP to anakin OP, we map
  // the input and output Tensor(fluid data structure) of fluid OP
  // to the corresponding ITensor (trt data structure) through the
  // Tensor name. When we set up ITensor for an variable, we must
  // ensure that it has not been set before.
  // If there is variable in the fluid graph, which is not only the
  // input of a OP, but also the output of a Op, there will be problems.
  // So we have to rename the variable in the subgraph to make sure
  // it is either an OP's input or an OP's output.

  auto &subgraph_nodes = *Agent(node).subgraph();
  for (size_t index = 0; index < block_desc.OpSize(); ++index) {
    framework::proto::OpDesc *op = block_desc.Op(index)->Proto();
    auto correspond_node = subgraph_nodes[index];
    PADDLE_ENFORCE_EQ(correspond_node->Name(), op->type());

    std::unordered_map<std::string, size_t> var2id;
    for (auto *in_var : correspond_node->inputs) {
      var2id[in_var->Name()] = in_var->id();
    }
    // rename for the input variables of op inside subgraph
    for (int i = 0; i < op->inputs_size(); i++) {
      // one input
      auto *in_var = op->mutable_inputs(i);
      std::vector<std::string> replaced_names;
      for (int k = 0; k < in_var->arguments_size(); k++) {  // all the arguments
        std::string arg_value = in_var->arguments(k);
        std::string arg_value_with_id =
            arg_value + std::to_string(var2id[arg_value]);
        if (input_names_with_id.count(arg_value_with_id)) {
          replaced_names.push_back(arg_value);
        } else {
          replaced_names.push_back(arg_value_with_id);
        }
      }
      in_var->clear_arguments();
      for (size_t k = 0; k < replaced_names.size(); k++) {
        in_var->add_arguments(replaced_names[k]);
      }
    }
    var2id.clear();
    for (auto out_var : correspond_node->outputs) {
      var2id[out_var->Name()] = out_var->id();
    }

    // rename for the output variables of op inside subgraph
    for (int i = 0; i < op->outputs_size(); i++) {
      framework::proto::OpDesc_Var *out_var = op->mutable_outputs(i);
      std::vector<std::string> replaced_names;
      for (int k = 0; k < out_var->arguments_size(); k++) {
        std::string arg_value = out_var->arguments(k);
        std::string arg_value_with_id =
            arg_value + std::to_string(var2id[arg_value]);
        if (output_names_with_id.count(arg_value_with_id)) {
          output_name_map[arg_value] = arg_value_with_id;
        }
        replaced_names.push_back(arg_value_with_id);
      }
      out_var->clear_arguments();
      for (size_t k = 0; k < replaced_names.size(); k++) {
        out_var->add_arguments(replaced_names[k]);
      }
    }
  }

  // When anakin engine runs at the end of the operation,
  // output_mapping help us copy the data from the renamed ITensor
  // to Tensor.
  std::vector<std::string> output_mapping;
  for (auto name : output_names) {
    PADDLE_ENFORCE(output_name_map.count(name) != 0);
    output_mapping.push_back(output_name_map[name]);
  }

  auto *vars = block_desc.Proto()->mutable_vars();
  for (framework::ir::Node *node : graph->Nodes()) {
    if (node->IsVar() && node->Var()) {
      *vars->Add() = *node->Var()->Proto();
    }
  }

  PADDLE_ENFORCE(!block_desc.Proto()->vars().empty(),
                 "the block has no var-desc");
  PADDLE_ENFORCE(!output_mapping.empty());
  op_desc->SetBlockAttr("sub_block", new_block);
  SetAttr(op_desc->Proto(), "subgraph",
          block_desc.Proto()->SerializeAsString());
  // Set attrs
  SetAttr(op_desc->Proto(), "parameters",
          ExtractAnakinParameters(graph->Nodes()));
  SetAttr(op_desc->Proto(), "output_name_mapping", output_mapping);
  auto engine_key =
      GenerateAnakinEngineKey(input_names_with_id, output_names_with_id);

  SetAttr(op_desc->Proto(), "engine_key", engine_key);
}

std::vector<std::string> ExtractAnakinParameters(
    const std::unordered_set<Node *> &nodes) {
  // We can judge whether a variable is a parameter by
  // its presistable property, but sometimes the presistable
  // of the feed op output is true, so we have to identify it.
  std::vector<std::string> feed_outputs;
  for (const auto &node : nodes) {
    if (!node->IsOp()) continue;
    std::string op_type = node->Op()->Type();
    if (op_type == "feed") {
      std::vector<std::string> output_names = node->Op()->OutputArgumentNames();
      std::copy(output_names.begin(), output_names.end(),
                std::back_inserter(feed_outputs));
    }
  }

  std::vector<std::string> parameters;
  for (const auto &node : nodes) {
    if (!node->IsVar()) continue;
    if (node->Var()->Persistable() &&
        std::find(feed_outputs.begin(), feed_outputs.end(), node->Name()) ==
            feed_outputs.end()) {
      parameters.push_back(node->Name());
    }
  }
  return parameters;
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle

REGISTER_PASS(anakin_subgraph_pass,
              paddle::inference::analysis::AnakinSubgraphPass);