analysis_predictor.h 15.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#pragma once
16 17
#include <algorithm>
#include <map>
N
nhzlx 已提交
18
#include <memory>
19 20
#include <string>
#include <vector>
21 22 23 24
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
    !defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#endif
25
#include "paddle/fluid/framework/naive_executor.h"
26
#include "paddle/fluid/framework/op_compatible_info.h"
Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
N
nhzlx 已提交
30
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/api/paddle_inference_api.h"
W
Wilber 已提交
32
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
33
#include "paddle/fluid/platform/float16.h"
34
#include "paddle/fluid/string/printf.h"
35 36 37 38
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
39

40 41 42
namespace paddle_infer {
using float16 = paddle::platform::float16;
}
43 44 45 46 47 48 49 50 51 52 53
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///

Y
Yan Chunwei 已提交
54 55 56 57 58
namespace paddle {

using inference::analysis::Argument;
using inference::analysis::Analyzer;
using framework::proto::ProgramDesc;
59
using framework::NaiveExecutor;
Y
Yan Chunwei 已提交
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
91
class AnalysisPredictor : public PaddlePredictor {
Y
Yan Chunwei 已提交
92
 public:
93 94 95 96 97
  ///
  /// \brief Construct a new Analysis Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
98
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
99 100 101 102
    if (config_.shape_range_info_collected()) {
      config_.SwitchIrOptim(false);
      config_.EnableMemoryOptim(false);
    }
103 104
    predictor_id_ = inference::GetUniqueId();
  }
105 106 107
  ///
  /// \brief Destroy the Analysis Predictor object
  ///
F
flame 已提交
108
  ~AnalysisPredictor();
Y
Yan Chunwei 已提交
109

110 111 112 113 114 115 116 117 118 119 120 121
  ///
  /// \brief Initialize predictor
  ///
  /// Initializing predictor mainly includes the following tasks:
  /// preparing scope, creating executor, preparing program, initializing the
  /// variables required by the executor, getting the feed_target_names and
  /// fetch_target_names, etc.
  ///
  /// \param[in] parent_scope parent scope
  /// \param[in] program program
  /// \return Whether the init function executed successfully
  ///
122 123
  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
Y
Yan Chunwei 已提交
124

125 126 127 128 129 130 131 132
  ///
  /// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
  ///
  /// \param[in] inputs input tensors
  /// \param[out] output_data output tensors
  /// \param[in] batch_size data's batch size
  /// \return Whether the function executed successfully
  ///
133 134 135 136
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

137 138 139 140 141
  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
N
nhzlx 已提交
142
  std::vector<std::string> GetInputNames();
143 144 145 146 147
  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
N
nhzlx 已提交
148 149
  std::vector<std::string> GetOutputNames();

150 151 152 153 154 155
  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
156 157
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
158 159 160 161 162 163
  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
164 165
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
166 167 168 169 170
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
171 172
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;

173 174 175 176 177
  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
178 179
  bool ZeroCopyRun() override;

W
Wilber 已提交
180 181 182 183 184
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // Note: Can only be used under thread_local semantics.
  bool ExpRunWithExternalStream(const gpuStream_t stream);
#endif

185 186 187 188 189
  ///
  /// \brief Create feed fetch variables
  ///
  /// \param[in] scope Scope needed to create variables
  ///
190
  void CreateFeedFetchVar(framework::Scope *scope);
191 192 193 194
  ///
  /// \brief Determine the model's inputs and outputs based on the program's
  /// feed fetch op
  ///
195
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
196

197 198 199 200
  ///
  /// \brief Set predictor's argument according to config, which mainly includes
  /// execution information and graph optimization related pass information
  ///
201
  void PrepareArgument();
202 203 204 205
  ///
  /// \brief According to argument information, execute the relevant pass
  /// to get the optimized model program
  ///
Y
Yan Chunwei 已提交
206 207
  void OptimizeInferenceProgram();

208 209 210 211 212 213
  ///
  /// \brief Clear the intermediate tensors of the predictor
  ///
  ///
  void ClearIntermediateTensor();

214 215 216 217 218 219 220 221 222 223 224
  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;

225 226 227 228 229
  ///
  /// \brief Get the argument used by predictor
  ///
  /// \return the argument obtained by config
  ///
230
  Argument &analysis_argument() { return argument_; }
231 232 233 234 235
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
236
  std::unique_ptr<PaddlePredictor> Clone() override;
237 238 239 240 241
  ///
  /// \brief Get the scope used by predictor
  ///
  /// \return scope
  ///
242
  framework::Scope *scope() { return scope_.get(); }
243 244 245 246 247
  ///
  /// \brief Get the inference program
  ///
  /// \return the inference program
  ///
248 249
  framework::ProgramDesc &program() { return *inference_program_; }

250 251 252 253 254
  ///
  /// \brief Get the serialized program
  ///
  /// \return the serialized program
  ///
255
  std::string GetSerializedProgram() const override;
Y
Yan Chunwei 已提交
256

257 258 259 260 261
  ///
  /// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
  ///
  /// \return Whether the function executed successfully
  ///
262 263
  bool MkldnnQuantize();

264 265 266 267 268
  ///
  /// \brief save program to model and save parameters to params
  ///
  /// \param[in] dir path to save the model
  ///
269 270
  void SaveOptimModel(const std::string &dir);

271
 protected:
272 273 274 275 276 277 278
  ///
  /// \brief Prepare predictor's required programs, including loading model
  /// information, graph optimization, and executor creation variables, etc.
  ///
  /// \param[in] program paddle program
  /// \return Whether the function executed successfully
  ///
279
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
280 281 282 283 284 285
  ///
  /// \brief Prepare scope environment, each predictor has its own scope
  ///
  /// \param[in] parent_scope The scope of the predictor to be cloned, or null
  /// \return Whether the function executed successfully
  ///
286
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
287 288 289 290 291
  ///
  /// \brief Create an Executor object
  ///
  /// \return Whether the function executed successfully
  ///
292
  bool CreateExecutor();
293 294 295 296 297
  ///
  /// \brief According to the model's program, the executor creates ops
  ///
  /// \return Whether the function executed successfully
  ///
298 299
  bool PrepareExecutor();

300 301 302 303 304
  ///
  /// \brief Load model program.
  ///
  /// \return Whether the function executed successfully
  ///
305
  bool LoadProgramDesc();
306 307 308 309 310
  ///
  /// \brief Load model parameters.
  ///
  /// \return Whether the function executed successfully
  ///
311
  bool LoadParameters();
312

313 314 315 316 317 318 319
  ///
  /// \brief Prepare input data, only used in Run()
  ///
  /// \param[in] input_datas inpute tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
320 321
  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
322 323 324 325 326 327 328
  ///
  /// \brief Get the output data, only used in Run()
  ///
  /// \param[out] output_data output tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
329 330
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
331 332 333 334 335 336
  ///
  /// \brief Get the output data, only used in GetFetch()
  ///
  /// \param[in] tensor for fetch op
  /// \param[out] output_data output tensor
  ///
337 338 339
  template <typename T>
  void GetFetchOne(const framework::LoDTensor &fetchs,
                   PaddleTensor *output_data);
340 341 342 343 344 345 346 347
  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensors
  ///
348
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
W
Wilber 已提交
349 350 351 352 353 354 355 356 357 358 359

  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensor shape
  ///
  void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);

360 361 362 363 364 365
  ///
  /// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
366
  void MkldnnPostReset();
Y
Yan Chunwei 已提交
367

N
nhzlx 已提交
368
#if PADDLE_WITH_TENSORRT
369 370 371 372 373 374 375 376 377 378 379 380 381 382
  ///
  /// \brief save calibration table
  ///
  /// When we use Paddle-TRT INT8 engine, we need to generate calibration table
  /// data first,
  /// the calibration table contains the range for each op's input and output,
  /// this whole process can be divided into several steps:
  /// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  ///  histogram for each tensor of the distribution of activation values.
  /// 2. Builds a calibration table from the histograms.
  /// After step 2, we need to store the calibration table on disk.
  ///
  /// \return Whether the function executed successfully
  ///
N
nhzlx 已提交
383
  bool SaveTrtCalibToDisk();
N
nhzlx 已提交
384
#endif
N
nhzlx 已提交
385

386 387 388 389 390 391 392 393
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

394 395 396 397
 private:
  void StatisticShapeRangeInfo();
  void CollectShapeRangeInfo();

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
    !defined(PADDLE_WITH_ASCEND_CL)
  // fleet exe related

  ///
  /// \brief prepare for fleet executor to run
  ///
  /// Used in AnalysisPredictor::Init(),
  ///
  bool PrepareFleetExecutor();

  ///
  /// \brief init NCCL env for multi gpus inference
  ///
  /// Used in AnalysisPredictor::PrepareFleetExecutor()
  ///
  bool CommInit();

  ///
  /// \brief read the config to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] ring_id_to_ranks: a ptr to ring_id_to_ranks
  /// \param[in] rank_to_ring_ids: a ptr to rank_to_ring_ids
  ///
  bool LoadConverterConfig(
      std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
      std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids);

  ///
  /// \brief add ops and run them with NaiveExecutor to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] tmp_var_name: var name to hold NCCL unique id
  /// \param[in] nranks: number of ranks in one comm group
  /// \param[in] rank: relative rank of current rank in the comm group
  /// \param[in] peer_endpoints: group's peers' endpoints
  /// \param[in] block: the block to insert comm ops
  /// \param[in] ring_id: the ring id to be used to init NCCL env
  ///
  void InsertCommOp(std::string tmp_var_name, int nranks, int rank,
                    const std::vector<std::string> &peer_endpoints,
                    framework::BlockDesc *block, int ring_id);
#endif

Y
Yan Chunwei 已提交
445
 private:
446
  AnalysisConfig config_;
Y
Yan Chunwei 已提交
447
  Argument argument_;
448 449 450 451 452
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
453
  framework::OpCompatibleMap op_compatible_map_;
454 455
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
N
nhzlx 已提交
456 457
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
Y
Yan Chunwei 已提交
458
  std::vector<framework::OpDesc *> fetches_;
N
nhzlx 已提交
459 460
  std::map<size_t, std::string> idx2fetches_;

461 462 463 464 465 466 467 468 469 470
#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

471
  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
472
  // concurrency problems, wrong results and memory leak, so cache them.
473
  std::vector<framework::LoDTensor> feed_tensors_;
Y
Yan Chunwei 已提交
474
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
Y
Yan Chunwei 已提交
475 476
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;
477

Y
Yan Chunwei 已提交
478 479 480 481
  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
482
  int predictor_id_;
Y
Yan Chunwei 已提交
483

484 485 486
 private:
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
487 488

  std::map<std::string, std::vector<std::vector<int32_t>>> shape_info_;
W
wenbin 已提交
489
  int clone_num_{1};
490 491 492 493 494 495 496 497

#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
    !defined(PADDLE_WITH_ASCEND_CL)
  // fleet executor related
  distributed::FleetExecutorDesc executor_desc_;
  std::shared_ptr<distributed::FleetExecutor> fleet_exe_;
  std::shared_ptr<distributed::TaskNode> task_node_;
#endif
Y
Yan Chunwei 已提交
498 499 500
};

}  // namespace paddle