communicator.py 7.3 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright(c) 2019 PaddlePaddle Authors.All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0(the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http:  // www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

29
from .executor import global_scope
30 31 32 33
"""
Communicator is used for async distribute training in distribute_transpiler mode.
It's a wrapper of a cpp class Communicator and should be used inside fleet API.
"""
34
from . import core
35
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
36

37
__all__ = ['Communicator', 'LargeScaleKV']
38 39 40


class Communicator(object):
41
    def __init__(self, mode, kwargs=None, envs=None):
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        """
        Communicator is used for async distribute training in distribute_transpiler mode.
        It's a wrapper of a cpp class Communicator and should be used inside fleet API.

        Args:
            program(Program): the trainers program after transpile of distribute_transpiler.
            It's used by communicator to extract the information to do communication.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.start()
                comm.stop()
        """
        # set all recv op to not_run mode
64

65 66 67 68 69 70 71 72 73 74 75 76
        if kwargs == None:
            if envs == None:
                envs = {}
        else:
            if mode == DistributedMode.SYNC:
                envs["pserver_endpoints"] = ','.join(kwargs[
                    "pserver_endpoints"])

            envs["trainers"] = str(kwargs["trainers"])
            envs["trainer_id"] = str(kwargs["trainer_id"])
            envs["need_global_step"] = str(kwargs["need_global_step"])
            envs["barrier_table_id"] = str(kwargs["barrier_table_id"])
77

78 79 80 81 82 83 84 85 86 87 88
        mode_str = None

        if mode == DistributedMode.SYNC:
            mode_str = "SYNC"
        elif mode == DistributedMode.ASYNC:
            mode_str = "ASYNC"
        elif mode == DistributedMode.HALF_ASYNC:
            mode_str = "HALF_ASYNC"
        elif mode == DistributedMode.GEO:
            mode_str = "GEO"

89 90 91
        self.mode = mode_str
        self.envs = envs
        self.communicator_ = None
T
tangwei12 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105
        self.send_ctx_ = None
        self.recv_ctx_ = None

    def init_with_ctx(self,
                      send_ctx,
                      recv_ctx,
                      proto_txt,
                      unit64_hosts,
                      scope=global_scope()):
        self.communicator_ = core.DistCommunicator(self.mode, proto_txt,
                                                   unit64_hosts, send_ctx,
                                                   recv_ctx, scope, self.envs)
        self.send_ctx_ = send_ctx
        self.recv_ctx_ = recv_ctx
106

107 108 109 110 111 112 113 114 115 116 117 118 119
    def create_client_to_client_connection(self,
                                           pserver_timeout_ms=500000,
                                           pserver_connect_timeout_ms=10000,
                                           max_retry=3):
        self.communicator_.create_client_to_client_connection(
            pserver_timeout_ms, pserver_connect_timeout_ms, max_retry)

    def get_client_info(self):
        return self.communicator_.get_client_info()

    def set_clients(self, host_list):
        self.communicator_.set_clients(host_list)

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    def start(self):
        """
        Start communicator. Should call before training process.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.start()
                comm.stop()
        """
137 138 139
        if self.communicator_ == None:
            print('you must call init_with_ctx first to init comm before start')
            return
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        self.communicator_.start()

    def stop(self):
        """
        Stop communicator. Should call after training process.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.start()
                comm.stop()
        """
159 160 161
        if self.communicator_ == None:
            print('you must call init_with_ctx first to init comm before stop')
            return
162
        self.communicator_.stop()
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

    def is_running(self):
        """
        Get communicator is running or stop.

        Returns:
            bool

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.is_running()
        """
180 181 182
        if self.communicator_ == None:
            print('you must call init_with_ctx first to init comm before stop')
            return
183
        self.communicator_.is_running()
184 185 186 187

    def recv(self):
        self.communicator_.recv()

T
tangwei12 已提交
188 189 190
    def init_params(self, context):
        self.communicator_.init_params(context)

191 192 193
    def pull_dense(self, context):
        self.communicator_.pull_dense(context)

T
tangwei12 已提交
194 195 196 197 198 199 200 201 202 203 204
    def push_sparse_param(self, var_name, table_id=-1, scope=global_scope()):
        if not self.is_running():
            raise ValueError(
                "Communicator should init first. Using fleet.init_worker() before push_sparse_param()"
            )
        assert isinstance(var_name, str)
        assert isinstance(table_id, int)
        if table_id == -1:
            table_id = self.send_ctx_[var_name].table_id()
        self.communicator_.push_sparse_param(var_name, table_id, scope)

205 206 207 208 209 210 211 212 213 214

class LargeScaleKV(object):
    def __init__(self):
        self.scale_kv = core.LargeScaleKV()

    def save(self, varname, dirname):
        self.scale_kv.save(varname, dirname)

    def load(self, varname, dirname):
        self.scale_kv.load(varname, dirname)
215 216 217

    def size(self, varname):
        return self.scale_kv.size(varname)
T
tangwei12 已提交
218 219 220


class HeterClient(object):
221 222 223
    def __init__(self, endpoint, previous_endpoint, trainer_id):
        self.heter_client_ = core.HeterClient(endpoint, previous_endpoint,
                                              trainer_id)
T
tangwei12 已提交
224 225 226

    def stop(self):
        self.heter_client_.stop()